设u=u(x,y)有二阶连续偏导数,证明在极坐标变换x=rcosθ,y=rsinθ下有∂^2u/∂x^2+∂^2u/∂y^2=∂^2u/∂r^2+1/r(∂u/∂r)+(1/r^2)(∂^2u/∂θ^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:33:10
设u=u(x,y)有二阶连续偏导数,证明在极坐标变换x=rcosθ,y=rsinθ下有∂^2u/∂x^2+∂^2u/∂y^2=∂^2u/∂r^2+1/r(∂u/∂r)+(1/r^2)(∂^2u/∂θ^2)
设u=u(x,y)有二阶连续偏导数,证明在极坐标变换x=rcosθ,y=rsinθ下有
∂^2u/∂x^2+∂^2u/∂y^2=∂^2u/∂r^2+1/r(∂u/∂r)+(1/r^2)(∂^2u/∂θ^2)
设u=u(x,y)有二阶连续偏导数,证明在极坐标变换x=rcosθ,y=rsinθ下有∂^2u/∂x^2+∂^2u/∂y^2=∂^2u/∂r^2+1/r(∂u/∂r)+(1/r^2)(∂^2u/∂θ^2)
∂u/∂r = ∂u/∂x * ∂x/∂r + ∂u/∂y * ∂y/∂r = ∂u/∂x * cosθ + ∂u/∂y * sinθ (1)
∂u/∂θ = ∂u/∂x * ∂x/∂θ + ∂u/∂y * ∂y/∂θ = ∂u/∂x * (-r sinθ) + ∂u/∂y * (r cosθ)
∂²u/∂r² = ∂(∂u/∂x * cosθ + ∂u/∂y * sinθ)/∂r
= cosθ *[ ∂²u/∂x² * cosθ +∂²u/∂x∂y * sinθ ] + sinθ *[ ∂²u/∂y∂x * cosθ + ∂²u/∂y² * sinθ ]
= ∂²u/∂x² * (cosθ)² + sin2θ * ∂²u/∂x∂y + ∂²u/∂y² * (sinθ)² (2)
∂²u/∂θ² = ∂[ ∂u/∂x * (-r sinθ) + ∂u/∂y * (r cosθ) ] / ∂θ
=(-r sinθ)*[ ∂²u/∂x² *(-r sinθ) +∂²u/∂x∂y * r cosθ] + r cosθ *[∂²u/∂y∂x * (-r sinθ) + ∂²u/∂y² * r cosθ]
+ ∂u/∂x * (-r cosθ) + ∂u/∂y * ( - r sinθ)
= ∂²u/∂x² * (r sinθ)² - r² sin2θ * ∂²u/∂x∂y + ∂²u/∂y² * (r cosθ)² - r * ∂u/∂r (3)
(2)+ (1/r²)* (3) + (1/r) * (1) = .= ∂²u/∂x² + ∂²u/∂y²
这两个偏导数的求法是,分别对 x=rcosθ,y=rsinθ 两边取微分,即 dx然后比较一下全微分公式即得你所需证的四个偏导数。