已知函数f x =x^2-alnx在区间(1.2】内是增函数,g(x)=x-a根x在区间(0,1)内是减函数1·求f(x) g(x)的表达式 2·求证:当x大于0时,方程f(x)-g(x)=x^2-2x+3有唯一的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:20:38
xݑN@_;Kl)۶oI]T̲D1@!$ _iY
s\=e% ;ž- [l% T;p>YD5}:p7=ZiG$1K4!K/κ\~sF|A8ltݢ HHlQ8b/0U.8^+fvn-쏺 H+qP2Wd&+)+i{}
已知函数f x =x^2-alnx在区间(1.2】内是增函数,g(x)=x-a根x在区间(0,1)内是减函数1·求f(x) g(x)的表达式 2·求证:当x大于0时,方程f(x)-g(x)=x^2-2x+3有唯一的解
已知函数f x =x^2-alnx在区间(1.2】内是增函数,g(x)=x-a根x在区间(0,1)内是减函数
1·求f(x) g(x)的表达式 2·求证:当x大于0时,方程f(x)-g(x)=x^2-2x+3有唯一的解
已知函数f x =x^2-alnx在区间(1.2】内是增函数,g(x)=x-a根x在区间(0,1)内是减函数1·求f(x) g(x)的表达式 2·求证:当x大于0时,方程f(x)-g(x)=x^2-2x+3有唯一的解
f'(x)=2x-a/x=(2x^2-a)/x
因为在(1,2],2x^2-a是单调增的,
所以要保证在此区间f'(x)>=0,须有f(1)=2-a>=0,即a0时的最小值.
故h(x)只有一个零点.
所以原方程只有一个根为x=1
已知函数f(x)=2/x+alnx,a属于R 求函数在区间(0,e]上的最小值.
函数f(x)=alnx+2/x的单调区间
已知函数f(x)=x2+2x+alnx.若函数f(x)在区间(0,1)是单调函数,求实数a的取
已知函数f(x)=x^2=2alnx 求函数f(x)的单调区间
已知函数f(x)=X平方+alnx.当a=-2时,函数f(x)单调区间和极值
已知函数f(x)=x^2-2alnx-1(a≠0),求函数f(x)的单调区间
已知函数f(x)=2alnx+2ax-x^2 a∈R,确定函数f(x)在区间(0,+∞)的单调性
已知函数f(x)=2/x+alnx(a属于R)求函数f(x)在区间(0,e]的最小值
已知函数f(x)=x2+alnx,当a=-2时,求函数f(x)的单调区间
已知f(x)=1/x+alnx若a=2,求函数f(x)的单调区间.
已知函数f(x)=x2-2(a+1)x+2alnx求f(x)单调区间
已知函数f(x)=x²-(a+2)x+alnx,其中常数a>0,求函数单调区间
已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值
已知f(x)=alnx-ax-3 求函数f(x)的单调区间
已知函数f(x)=((x^2)/2)-alnx(a
已知函数f(x)=x^2-alnx(a∈R).(1)若a=2,求函数f(x)的单调区间已知函数f(x)=x^2-alnx(a∈R)(1)若a=2,求函数f(x)的单调区间;(2)求f(X)在[1,e]上的最小值
已知函数f(x)=x²-2alnx求最值
已知函数f(x)=2x-alnx.设若a