如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:59:23
如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ
xŒ1K@ǿB m\.Eqq):8BTpjThR:!g?LK+.M:~;jxe䳨X-e/WW&3Sz>z}B8Lyd!WTWQhX۝.P0{RD!qܾ;ebnp`C-N*ez] \ 055w  e"&Q`E*xڌqp#2FS7Kqϸ MkӦu u> a

如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ
如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ

如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ
因为AB=AC,AE=CD,∠BAE=∠ACD=60度
所以△BAE与△ACD是全等三角形
则:∠ABE=∠CAD
又∠AEB=∠PEA
所以:△BAE与△APE是相似三角形
则:∠APE=∠BAE=60度
所以:∠APE=∠BPQ=60度
则在Rt△BPQ中,∠PBQ=30度
因为:sin∠PBQ=PQ/BP=1/2
所以:BP=2PQ\x0d关于如图,等边三角形ABC中,AE=CD,AD、BE相交与点P,BQ垂直AD于点Q,证明:(1)角ABE=角CAD(2)BP=2PQ