向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?(2)令f(x)=|向量a-向量bsinx|,x属于[0,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:59:39
向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?(2)令f(x)=|向量a-向量bsinx|,x属于[0,
xRJ#A{qz<($|@H x!9UqvYF=n"c/ltO^eޫWro?nq[/D|%5x}8Lκf"> yB?dJw^EN

向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?(2)令f(x)=|向量a-向量bsinx|,x属于[0,
向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.
(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?
(2)令f(x)=|向量a-向量bsinx|,x属于[0,2π],求f(x)的值域及单调递减区间.

向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?(2)令f(x)=|向量a-向量bsinx|,x属于[0,
(1)向量CA=OA-OC=a-(1/3)(a+b)=(2/3)a-(1/3)b,
CB=OB-OC=tb-(1/3)(a+b)=(-1/3)a+(t-1/3)b,
ab=-1/2,
∴向量CA*CB=(-2/9)a^2+(2t/3-1/9)ab+(1/9-t/3)b^2
=-2/9+1/18-t/3+1/9-t/3
=-2t/3-1/18-1/12时∠ACB为钝角.
(2)f(x)=|a-bsinx|,
[f(x)]^2=a^2-2absinx+b^2(sinx)^2=1+sinx+(sinx)^2=(sinx+1/2)^2+3/4,x∈[0,2π],
∴[f(x)]^2的值域是[3/4,3],
∴f(x)的值域是[√3/2,√3].

设向量 a,b 是两个不共线的非零向量若 设向量a,向量b是两个不共线的非零向量.(1)若向量OA=向量a,向量OB=t*向量b,向量OC=1/3(向量a+向量b),t∈R,那么当实数t为何知值时,A,B,C三点共线?(2)若向量a=向量b=1,且向量a与向量b夹角为120度,那么实 已知三个非零向量abc中的任意两个都不共线,若a+b与c共线,且b+c与a共线,试问:向量a+向量c与向量b是否共线?证明你的结论. 设向量a、向量b是两个不共线的非零向量(t∈R)(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),那么当实数t为何值时,A、B、C三点共线?(2)若∣向量a∣=∣向量b∣=1且向量a与向 设向量a.b是两个不共线的非零向量(t∈R)1.记向量OA=向量a,向量OB=向量tb,向量OC=1/3(向量a+向量b),那么当t为何值时,A,B,C 三点共线?2.若|向量a|=|向量b|=1 且 向量a与向量b夹角为120°,那么实数x为何值 若两个非零向量a与b不共线, 向量a,向量b是两个不共线的非零向量,且|a|=|b|=1,且向量a与向量b夹角为120°.(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),当实数t为何值时,∠ACB为钝角?(2)令f(x)=|向量a-向量bsinx|,x属于[0, 1.已知a向量、b向量是两个不共线的非零向量,若AB向量=a向量+b向量,BC向量=2a向量+8b向量,CD向量=3a向量-3b向量,(1)求证:A、B、D三点共线(2).确定是书K的值,使Ka向量+b向量与a向量+Kb向量共线 设向量a,向量b是两个不共线的非零向量,t∈R设向量a、向量b是两个不共线的非零向量(t∈R)(1)记向量OA=向量a,向量OB=t向量b,向量OC=1/3(向量a+向量b),那么当实数t为何值时,A、B、C三点共线 已知向量a,b是两个不共线的非零向量,他们的起点相同,且向量a ,tb,1/3(a+b)三个向量量的中点在同一直线上,求实数t的值 已知向量a,b是两个不共线的非零向量,t为常数.若向量a的模等于向量b的模且向量a与向量b的夹角为60°,那么t为何值时(向量a-t*向量b)的模的值最小? 向量证明三点共线若a、b是两个不共线的非零向量(t属于R),a、tb、1/3(a+b)三向量的起点相同,则t为何值时,三向量终点共线? 已知a向量,b向量是两个不共线的非零向量,它们的起点相同,且a向量,tb向量,1/3(a向量+b向量)3个向量的终点在同一直线上,求实数t的值 设向量a/b是不共线的两个非0向量,1.若向量OA=2向量a-向量b,向量OB=3向量a+向量b,向量OC=向量a-3向量b求证A,B,C三点共线2,若8向量a+k向量b与k向量a+2向量b共线求k3设向量OM=m向量a,向量ON=n向量b,向量OP= 已知向量e1,向量e2是平面内两个不共线的非零向量,向量AB=2向量e1+向量e2,向量BE=向量-e1+入向量e2,向量EC=-2向量e1+向量e2,且A,E,C三点共线①求实数入的值②若向量e1=(2,1),向量e2=(2,-2)求向量BC 设a向量,b向量是两个不平行得非零向量,且x(2a向量+b向量)+y(3a向量-2b向量)=7a,x,y属于R,求x,y的值 设向量a,向量b为不共线的两个向量向量c=向量a+λ*向量b,向量d=(向量b-2*向量a)且向量c,向量d共线,求λ的值 若(向量)a,(向量)b是两个不共线的非零向量,(向量)a与(向量)b起点相同,则当t为何值时,(向量)a,t(向量)b,1/3((向量)a+(向量)b)三向量的终点在同一条直线上?