g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:20:33
g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m
xUMo@+ܰMm@UK%VihHX6UBuB!q1^=/0kPbe߼y37Yۍ}ϵxOL}{P-pd)=46hT OO·9nqii7 KW BثX Kw-@4ZE"Sޯa!@iWʹf$5 ?Pzt;J3kl*ۥvi]h* q٩VLبRMR'`YDpmN&ﳭEKċJBc<܈VXEiGNlVov/p[z G%EaJK۽!qJ|V$kB˗w"q)Iv("_U""s|N&u}fH^ASq٭ϸKʛ7YSg~)8$=٢l*=.Zv5Gqlt

g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m
g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m

g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m
g(x)=x^2-2m(lnx+x)
g(x)=x^2-2mlnx-2mx
g'(x)=2x-2m/x-2m
1、令:g'(x)>0,即:2x-2m/x-2m>0
①当x>0时,有:x^2-mx-m>0
(x-m/2)^2>(m^2+4m)/4
x>[m+√(m^2+4m)]/2,x<[m-√(m^2+4m)]/2
考虑到x>0,
所以,解得:x>[m+√(m^2+4m)]/2
②当x<0时,有:x^2-mx-m<0
(x-m/2)^2<(m^2+4m)/4
[m-(m^2+4m)]/2<x<[m+√(m^2+4m)]/2
考虑到x<0
所以,解得:[m-(m^2+4m)]/2<x<0
综合以上,有:g(x)的单调增区间是x∈([m-√(m^2+4m)]/2,0)∪([m+√(m^2+4m)]/2,∞)
2、令:g'(x)<0,即:2x-2m/x-2m<0
①当x>0时,有:x^2-mx-m<0
(x-m/2)^2<(m^2+4m)/4
[m-(m^2+4m)]/2<x<[m+√(m^2+4m)]/2
考虑到x>0,
所以,解得:0<x<[m+√(m^2+4m)]/2
②当x<0时,有:x^2-mx-m>0
(x-m/2)^2>(m^2+4m)/4
x>[m+√(m^2+4m)]/2,x<[m-√(m^2+4m)]/2
考虑到x<0,
所以,解得:x<[m-√(m^2+4m)]/2
综合以上,有:有:g(x)的单调减区间是x∈(-∞,[m-√(m^2+4m)]/2)∪(0,[m+√(m^2+4m)]/2)
因此,当x=[m-√(m^2+4m)]/2时,g(x)取得最小值
g(x)最小={[m-√(m^2+4m)]/2}^2-2mln{[m-√(m^2+4m)]/2}-2m[m-√(m^2+4m)]/2
{[m-√(m^2+4m)]/2}^2-2mln{[m-√(m^2+4m)]/2}-2m[m-√(m^2+4m)]/2=0
m^2-m√(m^2+4m)+(m^2+4m)/4-2mln{[m-√(m^2+4m)]/2}-m^2+m√(m^2+4m)=0
(m^2+4m)/4-2mln{[m-√(m^2+4m)]/2}=0
(m^2+4m)/4=mln{[m^2+m√(m^2+4m)]/2}
e^[(m^2+4m)/4]={[m^2+m√(m^2+4m)]/2}^m
懒得往下写了,就到这吧.
楼主只要解上面的方程,就能得到m了.

我猜应该是 e^(-m/2)

g(x)=x^2-2m(lnx+x)(m>0)的最小值为0,求m 已知f(x)=lnx,g(x)=1/2x^2+mx+7/2(m 已知f(x)=lnx,g(x)=1/2x^2+mx+7/2(m 已知f(x)=lnx,g(x)=1/2x^2+mx+7/2(m 已知函数f(x)=mx-m/x g(x)=2lnx 若x£(1,e],不等式f(x)-g(x) 已知函数f(x)=x^3-2x 1,g(x)=lnx,是否存在实常数k,m,已知函数f(x)=x^3-2x+1,g(x)=lnx,是否存在实常数k,m,使得x>0时,f(x)≥kx+m且g(x)≤kx+m?若存在,求出k和m. x^2-x +m-lnx=0 (x>0) 求m的取值范围 函数f(x)=x^2-8lnx,g(x)=-x^2+14x,若方程f(x)=g(x)+m有唯一解,求实数m的值 已知函数f(x)=x²2;-8lnx,g(x)=-x²2;+14x.若方程f(x)=g(x)+m有唯一解,试求实数m的值 已知函数f(x)=x^3-2x+1,g(x)=lnx 是否存在实常数k和m,使得x>0时,f(x)>=kx+m且g(x) 已知函数f(x)=e^x-mx,若函数g(x)=f(x)-lnx+x^2存在两个零点,求M的范围 已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-9/8且g(1)=-1,令f(x)=g(x+1/2)+m*lnx+9/8(m属于R,x大于0)1:求g(x)的表达式;2:若存在x大于0使f(x) 已知二次函数g(x)对任意实数x都满足g(x)=g(1-x),g(x)的最小值为-9/8且g(1)=-1,令f(x)=g(x+1/2)+m*lnx+9/8(m属于R,x大于0)1:求g(x)的表达式;2:若存在x大于0使f(x) 已知函数f(x)=x^2-mx(m属于R),g(x)=lnx若对任意有意义的x,不等式f(x)>g(x)成立,求m的取值范围 已知f(x)=2lnx+1/x-x(x>0).(1)求函数f(x)单调区间.(2)设g(x)=(1-x...已知f(x)=2lnx+1/x-x(x>0).(1)求函数f(x)单调区间.(2)设g(x)=(1-x)(x^2 e^1/x-e^x),若g(x)>=m对x>0恒成立,求m取值范围 已知函数f(x)=x-lnx,g(x)=lnx/x,求证f(x)>g(x)+1/2 f(x)=(m+1/m)lnx+1/x-x,当m=2时.求函数的最大值 已知函数g(x)=1/(sinΦ*x)+lnx在[1,+∞)上为增函数,且Φ∈(0,派) f(x)=mx-(m-1)/x-lnx,m∈R(2)若 f(x)-g(x)在[1,+∞)上为单调函数,求M取值范围 这个问题中,(f(x)-g(x))'怎么求?m/x的导数不是-1/x 怎么是m/x^呢?