如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,F,G,H,四点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:23:29
如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,F,G,H,四点
xRn@J}ZC).~@ PqETj*&P;Ic;&?ɿY\"xn^̙֮3g&W~ # J2ܙPYI&~83A$DПj}ŜsZA.)b7j0r)ƿsf|=yA@0~a_E?Ƭ*.^"s:DОp5" NT9a;*%9PH8NɛYgE#G9E}y ό9f_'hyoTS¼rR."EVx" Gn3kmf?&\Mvt4 W0S3ѿ_ :n'rS] n:*oǜަ\5">$y{d4M ^ Y sJ=\r r{Ak+XD2v0l@4p%?mn@T%dVjh\>ně^KZMuq0G22ZG`|&x& ۻ_v?

如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,F,G,H,四点
如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,F,G,H,四点

如图所示,在四边形ABCD中,已知AB//CD,直线AB,BC,AD,DC分别与平面a相交于点E,G,H,F.求证:E,F,G,H,四点
由于两条平行线确定一个平面,AB∥CD,可知A、B、C和D四点共在同一平面内,记该平面为β,那么直线AB、BC、AD和DC也都在平面β内,这些直线上的点E、F、G和H(四直线与平面α的交点)也随之在平面β内;但E、F、G和H四点又在平面α内,所以此四点必在α和β两平面的交线上,因两平面的交线是一条直线,所以E、F、G和H四点在同一直线上.

∵AB∥CD,
∴AB,CD确定一个平面β.
又∵AB∩α=E,AB⊂β,∴E∈α,E∈β,
即E为平面α与β的一个公共点.
同理可证F,G,H均为平面α与β的公共点.
∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,
∴E,F,G,H四点必定共线....

全部展开

∵AB∥CD,
∴AB,CD确定一个平面β.
又∵AB∩α=E,AB⊂β,∴E∈α,E∈β,
即E为平面α与β的一个公共点.
同理可证F,G,H均为平面α与β的公共点.
∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,
∴E,F,G,H四点必定共线.

收起