设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:00:39
设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.
xSMn@ qx$A,<܀mEؤQGjiAA 6RE BC䱓Uoq~ڨ`{7Q-isgLRKQ_|Crt={a@UjoR{f

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.
设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值
我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5c,求tanAcotB的值我用边化角做了,用角化边没做出来.乱七八糟化简到:2a^2-2b^2=6/5c^2不知道对不对.
a/sina=b/sinb=c/sinc
sina/sinb=a/b
cosb=(a^2+c^2-b^2)/2ac
cosa==(b^2+c^2-a^2)/2ac
因为acosB-bcosA=3/5c
所以化简得3c^2=5a^2-5b^2
tanAcotB=sina乘以cosb/cosa*sinb=a/b乘以(a^2+c^2-b^2/b^2+c^2-a^2)再乘以b/a=(3/5c^2+c^2)/(c^2-3/5c^2)=4

∵acosB-bcosA=3c/5
∴2R*sinAcosB-2R*sinBcosA=2R*sinC*3/5(正弦定理)
∴sinAcosB-sinBcosA=3sinC/5
∴sinAcosB-sinBcosA=3sin[π-(A+B)]/5
∴sinAcosB-sinBcosA=3sin(A+B)/5
∴sinAcosB-sinBcosA=(3/5)*(...

全部展开

∵acosB-bcosA=3c/5
∴2R*sinAcosB-2R*sinBcosA=2R*sinC*3/5(正弦定理)
∴sinAcosB-sinBcosA=3sinC/5
∴sinAcosB-sinBcosA=3sin[π-(A+B)]/5
∴sinAcosB-sinBcosA=3sin(A+B)/5
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB+cosAsinB)
∴sinAcosB-sinBcosA=(3/5)*(sinAcosB)+ (3/5)*(cosAsinB)
∴(2/5)*(sinAcosB)=(8/5)*(sinBcosA)
∴sinAcosB=4sinBcosA
∴tanAcotB=(sinA/cosA)*(cosB/sinB)=(sinAcosB)/(sinBcosA)=(4sinBcosA)/(sinBcosA)=4

收起

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3/5 求tanAcotB的值 设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB=3,bsinA=4.求边长A 设三角形abc的内角ABC所对的边长分别为abc,(a+b+c)×(a-b+c)=ac设三角形abc的内角abc所对的边长分别为abc,(a+b+c)×(a-b+c)=ac1,求B角2,若sinAsinC=(√3-1)/4,求C 设三角形ABC的内角A.B.C所对边长分别为a.b.c,且acosB-bcosA=4/5c,则tanA/tanB的值 设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=4c/5,则tanA/tanB多少 设三角形ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4,求a? △ABC的三内角A、B、C所对边长分别为a、b、c,设向量p=(a+c,b),q=(b-a,c-a),若p//q,则角C的大小 设△ABC的内角A.B.C所对的边分别 若(3b-C) 设a,b,c分别为△ABC的三个内角,A,B,C所对的边长,且满足a/cosA=b/cosB=c/cosC=4,则△ABC的面积为 一道数学题:设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.(1)求tanAcotB的值(2)求tan(A+B)的最大值 设△ABC中的内角A,B,C所对的边长分别为a,b,c,且角A=60度,c=3b.求(1)a/b的值(2)cosb 设△ABC中的内角A,B,C所对的边长分别为a,b,c,且角A=60度,c=3b.求(1)a/b的值(2)co 设锐角△ABC的三个内角A,B,C所对边的边长分别为a,b,c,且a=1,B=2A,则b的取值范围? 设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5,1、求tanA/tanB的值 2、求tan(A-B)的最大 设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5(1)求tanAcotB的值.(2)求tan(A-B)的最大值 设△ABC的内角A,B,C的对边长分别为a,b,c.证明:a2-b2/c2=sin(A-B)/sinC 设△ABC的内角A,B,C的对边长分别为a,b,c.证明:a2-b2/c2=sin(A-B)/sinC 数学设△abc的内角a.b.c所对边长分别为a.b.c,且acosb—bcosa=2c.(1)求证:tanA=-3tanB(2)求C最大值.