已知函数f(x)=2x/ax+b(a,b为常数,且a不为0)满足f(2)=1,且方程ax^2+(b-2)x=0有两个相等的实数根,求函数f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 11:06:51
已知函数f(x)=2x/ax+b(a,b为常数,且a不为0)满足f(2)=1,且方程ax^2+(b-2)x=0有两个相等的实数根,求函数f(x)
x͐N@_ 5-df mĔ(jP  @t+x+]޿ssjI.^Pb1#Vq+9 D hx{kB6.Y9aeTT;| zS]:j~Cj9|K}y6H]ݥ 2: Ia=FL.pI lQ6AY "62yY 1= beТndcL eI#`}]|֪LA"ُew

已知函数f(x)=2x/ax+b(a,b为常数,且a不为0)满足f(2)=1,且方程ax^2+(b-2)x=0有两个相等的实数根,求函数f(x)
已知函数f(x)=2x/ax+b(a,b为常数,且a不为0)满足f(2)=1,且方程ax^2+(b-2)x=0有两个相等的实数根,求函数f(x)

已知函数f(x)=2x/ax+b(a,b为常数,且a不为0)满足f(2)=1,且方程ax^2+(b-2)x=0有两个相等的实数根,求函数f(x)
f(2)=1,代入得4/(2a+b)=1,ax^2+(b-2)x=0有两相等的实数根,根的判别式=(b-2)^2=0,得b=2,代入4/(2a+2)=1解得a=1
f(x)=
2x/(x+2)

由f(2)=1,可以得到a和b的一个等式,则b可以用含a的式子表示
方程ax^2+(b-2)x=0有两个相等的实数根,则判别式=0,
由这两式求解a和b,可得出结果