求证:tan(3x/2)-tan(x/2)=2sinx/(cosx+cos2x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:13:58
求证:tan(3x/2)-tan(x/2)=2sinx/(cosx+cos2x)
x){F< }#M] İ5*̫H/F6IEi/!L `q[r>P5T H .bhl ' @7V?.Sf.i; M?tR`bz "ljӾO?|u~qAb(BW

求证:tan(3x/2)-tan(x/2)=2sinx/(cosx+cos2x)
求证:tan(3x/2)-tan(x/2)=2sinx/(cosx+cos2x)

求证:tan(3x/2)-tan(x/2)=2sinx/(cosx+cos2x)
tan(3x/2)-tan(x/2)
=sin(3x/2)/cos(3x/2)-sin(x/2)/cos(x/2)(通分)
=[sin(3x/2)cos(x/2)-cos(3x/2)sin(x/2)]/[cos(3x/2)cos(x/2)]
=sin(3x/2-x/2]/[(1/2)(cos2x+cosx)(积化和差)
=2sinx/(cosx+cos2x)
故原式成立.