如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:14:22
如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形
xW[OG+T0dT6 /}t"DUZ$;nrqq66H?!]sfvZ)J(Rg|;߹z`jO%aZ[{V*_hb\7jN|Jbbۨ$kZy!HB5]"R3;X4g]~u|~WlaK>;7a7 :>`Q7o^عyH}nZ*!|f^<16_X?)6zsfuF4eO8J_!wD@A>vf+uԨ]v!Ħ0l g@ \*5}; ׊s?B>.Cmǧ9g258o6mEEdvǪ/$jyA Zޥ\;Cǀb 27@( =A?WUh. CMV ` J[zh K'Ts,§h!?>`A/vur[skɶ$ؖ. Ot)ZuMT$偓#h h*à= ?v[ǩ ݪ$% h Q鄢bb6:Tw\$_O@Q{c (i{8\Q7ꖤh$DD? #2R% fR4RrsHB1W~RO 1%2&}q%Q t2⫸g.πvΦ}tX"ޤmQ8]Uel |̪칣*^\u7zmo(ك 3!/^NRtL3a~cvɜ?oMkyƐzc [JLqY%%eW𚭾3K!}S`^auqhdf69EXOkߴ 1|`)vwd\g<5z6|b0l^uPGXO}J;d0g`*|5-f-WyaE QX|y/[|KZ< \Xi͕0vR[ޗn*Et'7]VW~:qf^ Hfn΀A^>r}IЧJН/Y-C

如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形
如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……
过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P坐标.
如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标为4.
(1)求K的值 答:8
(2)若双曲线Y=X分之K(K>0)上一点C的纵坐标为8,求三角形AOC的面积
(3)过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P坐标。
)

如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形
因为点A横坐标为4,所以当 x=4时y=2.
所以,点A的坐标是(4,2).
因为点A是直线y=1/2x与双曲线y=8/x(k>0)的交点,所以,k=4×2=8.
(2)因为点C在双曲线上,当y=8时,x=1.所以,点C的坐标是(1,8).
过点A,C分别作x轴,y轴的垂线,垂足为M,N,得矩形DMON.
矩形ONDM的面积=32,S△ONC=4,S△CDA=9,S△OAM=4.
S△AOC=矩形ONDM面积-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
(3)因为反比例函数图象是关于原点O的中心对称图形,所以,OP=OQ,OA=OB.
所以,四边形APBQ是平行四边形.
所以,S△POA=1/4S平行四边形APBQ=1/4×24=6.
设点P的横坐标为m(m>0,且m≠4),得P(m,8/m).
过点P,A分别作x轴的垂线,垂足为E,F.
所以,点P,A在双曲线上,所以,S△POE=S△AOF=4.
若0

i8io

1)y=x/2 =4/2=2 所以 A(4,2)
2=k/4 得k=8
2)y=8/x=8 得x=1 所以C(1,8)
三角形AOC的面积 为 1*8/2+(8+2)3/2- 4*2/2=4+15-4=15
3)p(a,8/a) a>0
x/2=8/x 得x=±4 所以B(-4,-2)
过P的直线方程为 y=8x/a²
所以Q(-a,-8/a)

(1)y=x/2,y=k/x,
x=4时,y=2,故k=8,
(2)可得C(1,8),而A(4,2),B(-4,-2),
三角形AOC的面积就是在x轴投影为宽,在y轴投影为高,
S△AOC=(4-(-4))*(8-(-2))/2=40,
(3)设P(x,y),x、y>0,
根据直线L过原点,和双曲线y=8/x关于原点对称,可知Q(-x,-y),

全部展开

(1)y=x/2,y=k/x,
x=4时,y=2,故k=8,
(2)可得C(1,8),而A(4,2),B(-4,-2),
三角形AOC的面积就是在x轴投影为宽,在y轴投影为高,
S△AOC=(4-(-4))*(8-(-2))/2=40,
(3)设P(x,y),x、y>0,
根据直线L过原点,和双曲线y=8/x关于原点对称,可知Q(-x,-y),
当x<4时,则四边形ABPQ在x轴投影为AB在x轴的投影为宽,在y轴投影为PQ在y轴的投影为高,
有S四边形=2y*8/2=24,得y=3,则x=8/3,
当x>4时,则四边形ABPQ在x轴投影为PQ在x轴的投影为宽,在y轴投影为AB在y轴的投影为高,
有S四边形=2x*4/2=24,得x=6,则y=4/3,
故P为(8/3,3)或(6,4/3)。

收起

P(9,2分之1)
根据A(3,?)求出双曲线中k=2分之9,设P(x,9x/2),此四边形为平行四边形,且S△OAP=1/4S四边形,∴S△OPA=6,分类讨论:1,、直线L斜率大于已知直线,根据面积列式求出x=0或-1,舍;2、直线L斜率小于原直线,解得x=9或-1,∵x大于0∴x=9,带入双曲线得解。...

全部展开

P(9,2分之1)
根据A(3,?)求出双曲线中k=2分之9,设P(x,9x/2),此四边形为平行四边形,且S△OAP=1/4S四边形,∴S△OPA=6,分类讨论:1,、直线L斜率大于已知直线,根据面积列式求出x=0或-1,舍;2、直线L斜率小于原直线,解得x=9或-1,∵x大于0∴x=9,带入双曲线得解。

收起

如图,直线Y=负二分之一X+1与X轴,Y轴分别. 如图,已知直线y等于二分之一x与双曲线y等于x分之k交于A,B两点,且点A的横坐标为4.过原点 的另一条直线 如图,已知直线y等于二分之一x与双曲线y等于x分之k交于A,B两点,且点A的横坐标为4.过原点 如图,平面直角坐标系中,直线y=二分之一x+二分之一与x轴交于点A,与双曲线y=x分之k在第一象限内交于点B,BC垂直于x轴于点C,OC=2AO,求双曲线解析式 如图,在平面直角坐标系中,直线y=二分之一x+二分之一与x轴交于点A,与双曲线y=x分之k交于B,BC垂直于x轴,oc=2ao 求双曲线解析式 如图,平面直角坐标系中,直线y=二分之一x+二分之一与x轴交于点A,与双曲线y=x分之k在第一象限内交于点B,BC垂直于x轴于点C,OC=2AO,求双曲线解析式 如图,点P是直线y=1/2x+2与双曲线y=k/x在第一象限内的一个交点如图,点P是直线y=2分之1x+2与双曲线y=k/x在第一象限内的一个交点,直线y=二分之一x+2与x轴、y轴的交点分别为A、C,过P作PB垂直雨X轴,若A 如图.点P是直线y=2分之1x+2与双曲线y=k/x在第一象限内的一个交点如图,点P是直线y=2分之1x+2与双曲线y=k/x在第一象限内的一个交点,直线y=二分之一x+2与x轴、y轴的交点分别为A、C,过P作PB垂直雨X轴 如图,已知正比例函数y=二分之一x与反比例函数y=x分之k(k 如图,已知正比例函数y=二分之一x与反比例函数y=x分之k(k 如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标(3)……过原点的另一条直线L交双曲线y=x分之k(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形 如图,点P是直线y=2分之1x+2与双曲线y=k/x在第一象限内的一个交点,直线y=二分之一x+2与x轴、y轴的交点分手 如图,直线y=-x+b与双曲线y=-3/x(x 如图,直线y=-x+6与双曲线y=-1/x(x 如图,直线y=-x+6与双曲线y=-1/x(x 如图,直线y=-x+6与双曲线y=-1/x(x 如图,直线y=二分之一x+1分别交x轴y轴于点A、c点P是直线AC与双曲线y=x分之k在第一象限内的交点,PB⊥x轴,垂足为B,三角形APB的面积为4 求点P坐标 求双曲线的解析式及直线与双曲线另一支Q的坐标 如图,已知直线y=二分之一x与双曲线y=x分之k(k>0)交于A,B两点,且A点的横坐标4……设P双曲线y=x分之k(k>0)线上一点,P的横坐标为m(m>4)△OPA的面积为S,S的关于m的函数表达式. 已知直线y=3x与y=二分之一+4求 1、这两条直线的交点 2这两条直线与y轴围成的三角形面积↑