我想问一下什么叫质数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:41:16
我想问一下什么叫质数?
xVRXn;M'!!2%=o/X55B+*((]eh͇/9˚Ґ˾:g)'w$״{۲m%Yv~~k?,7K{ϳ->XᚧL^H֞';{ irT ͚kPw5{pK4d [HÑSI/IlR:">|t+,[E(`5rv dknwwmxŸk0+fٻVJNyy5u{0G\WB0ބo'{1%-Hn|wx s7vfjl']vu`Wü"+{!+${Q eq40"oXнt귓$(mOO?l[^J@Tf/oтw{7 ރW2ܾeM)z,QN6ፒ9&Q b%`4p-S$IU'3,k`9d; (qji"LS b )"k2|k2%)T(ofA1ށӯi|պqŚo۱X{orSl)97]tnV,d8˯Ĉ'Qm 2N fuZf:!]38{0YA԰j-$D%&^2[ X̥]'*ZlQfYhl!UL-:(p2dX͡4s PD OA6 z˞eڵH7Y*-g=?skx K|&2"%8ڻu=vGcp G!QNvN7EH:飜wcE^Vd}QØ|Pi9s@z=ڢ8IU3jaoCngCr(*&"sw_yXO[}8$A/wcI3hb=QUgHHrƙr8]Y$B;(b8hȆ* FHY ."uѐft u2^@$CDN$xؠ SSSg,~j[

我想问一下什么叫质数?
我想问一下什么叫质数?

我想问一下什么叫质数?
质数
什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数.这终规只是文字上的解释而已.能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?
质数的分布是没有规律的,往往让人莫名其妙.如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数.
有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数.这个式子一直到n=39时,都是成立的.但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41.
被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质.他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数.但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数.
更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数.目前由于平方开得较大,因而能够证明的也很少.现在数学家们取得Fn的最大值为:n=1495.这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数.质数和费尔马开了个大玩笑!
17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数.他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数.p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数.
还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证.梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数.这是第九个梅森数.20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数.质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难.
还有一种质数叫费马数.形式是:Fn=2^(2^n)+1 是质数的猜想.
如F1=2^(2^1)+1=5
F2=2^(2^2)+1=17
F3=2^(2^3)+1=257
F4=2^(2^4)+1=65537
F5=2^(2^5)+1=4294967297
前4个是质数,因为第5个数实在太大了,费马认为是实数,并提出(费马没给出证明)
后来欧拉算出F5=641*6700417.
目前只有n=0,1,2,3,4,Fn才是质数.

质数的定义:
一个大于1的自然数,除了1与它自身外,再没有其它的正约数了,这样的自然数叫做质数

就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。

说简明点,就是只能被1和它本身整除的数,最小的质数是2

已知质数只有1和它本身两个约数