抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且AF2=5,求双曲线C2的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:43:40
x͒N@_dj) !Kiݔ!7X Fc0!t!%Lg
gZ0\f.gsL j?G:]7]9(ATɘZXZ>ˇm֚4j>E
_c߾2R6GI8;^LnoGpvUс 66`(7~4>+[_yKؿW7
Ksh(v$Ł$D.u e!=Ige@@]@jTh[RM|^(4
a%5YrR[LZ4TIfH&IjzukҮc5Y<1mM<7=D
抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且AF2=5,求双曲线C2的方程
抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,
且AF2=5,求双曲线C2的方程
抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且AF2=5,求双曲线C2的方程
y^2=8x=2px,则p=4,焦点坐标是(2,0)
即F2(2,0),那么F1(-2,0)
设A坐标是(m,n)
AF2=m+p/2
5=m+2,m=3,则n^2=8*3,n=2根号6.
AF1=根号[(3+2)^2+(2根号6)^2]=7
故AF1-AF2=2a=7-5=2
a=1
b^2=c^2-a^2=4-1=3
双曲线方程是x^2-y^2/3=1
抛物线C1;y2=8x与双曲线C2:x2/a2-y2/b2=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且AF2=5,求双曲线C2的方程
已知双曲线C1:x2/a2-y2/b2=1(a>0,b>0)的左右焦点分别是F1,F2,抛物线C2;y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离线率为____
已知双曲线C1与椭圆C2:x2/49+y2/36=1有公共的焦点,且双曲线C1经过点M(-4,2倍根已知双曲线C1与椭圆C2:x^2/49+y^2/36=1有公共的焦点且双曲线C1经过点M(﹣4,2√7/3)求双曲线方程
设F是抛物线C1:y2=2px 的焦点,点A是抛物线与双曲线C2:x2 a2 -y2 b2 =1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为
已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断我要详细过程,谢谢!已知圆C1:X2 + Y2 + 2X + 8Y – 8 = 0,C2 :X2 + Y2 + 4X - 4Y – 2 = 0. 是判断圆C1与C2的关系。
已知双曲线x2/a2-y2/b2=1(a>0 b>0)的离心率为2 若抛物线c2:X²=2py(p>0)的焦点到双曲线C1的渐近线的距已知双曲线x2/a2-y2/b2=1(a>0 b>0)的离心率为2 若抛物线c2:X²=2py(p>0)的焦点到双曲线C1的渐近
求圆C1:X2+Y2-4=0与C2:X2+Y2-4X+12的公切线长x2+y2-1=0 x2+y2-8x+12=0打错了
已知双曲线C1:x2/a2-y2/b2的离心率为2,若抛物线C2:x2=2py的焦点到双曲线C1的渐近线的距离为2,若A,B是C2上两点且OA⊥OB,则直线AB与y轴的交点的纵坐标为A.8√3/3 B.16 c.8 D.16√3/3
已知双曲线C1:x2/a2-y2/b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐进线的距离为2,则抛物线C2 的方程为()A、x2=8(根号下3)/3y B、x2=16(根号下3)/3y C、x2=8y D、x2=16y
圆c1:x2+y2=4与圆c2:(x-5)+y2=16的位置关系为同
圆c1:x2+y2=4与圆c2:(x-5)+y2=16的位置关系为 MrTopshy |
两圆c1:x2+y2=1与c2:(x+3)2+y2=4的公切线有几条?
求与圆C:x2+y2-2x=0 C2:X2+Y2+4Y=0求圆c1、c2的切线长
已知椭圆c1:x2/a2+y2/b2=1(a>b>0)与双曲线c2:x2已知椭圆c1:x2/a2+y2/b2=1(a>b>0)与双曲线c2:x2-y2/4=1有公共焦点,c2的一条渐近线与以c1的长轴为直径的园交于A.B两点.若c1恰好将线段AB三等分 得.b^2=0.5 C2的
如图,已知抛物线C1的解析式为y=-x^2+2x+8,图像与y轴交于D点,并且顶点A在双曲线上.若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点
已知双曲线C1:x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,抛物线C2:y^2=2px与双曲线C1共同焦点,C1与C2在...已知双曲线C1:x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,抛物线C2:y^2=2px与双曲线C1共同焦点,C1与C2在第一
c1:x2+y2-2x-6y-6=0,与圆c2:x2+y2-4x+2y+4=0的公切线的条数.
已知圆C1:x2+y2+4x+1=0和圆C2:x2+y2+2x+2y+1=0,则以圆C1与圆C2的公共弦为直径的圆的方程为?