已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点若椭圆上存在一点C,是四边形OACB为平行四边形.(Ⅰ)求椭圆的离心率;(Ⅱ)若△OAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:30:00
已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点若椭圆上存在一点C,是四边形OACB为平行四边形.(Ⅰ)求椭圆的离心率;(Ⅱ)若△OAC
xUAoW+{eWqN,Xf;BzR_SplcRSCjc 8n` t_ޮqܨRrT {3|Z ǧI꺮ztNK21[EƺҵW{{^btj% +?KrkQ];=x4!u-/jְGo,GԧKOFc:4/Z5jAfA1ha& %^l_yGno̳ I@`*c߅3y}euPL\ոf2bXJg uL3TteA$ G1wyD7By3Ab$r ;gZo}}82+MúX3K9`n<\M|ڼ[UI}2g xX?HLֵR4& jI`2E1IIsQT;vzoˑ`^D0mbu 8YΣ *)08}ǧ0gRGY߁Q9s4;#Bsb+j:l ݕ8

已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点若椭圆上存在一点C,是四边形OACB为平行四边形.(Ⅰ)求椭圆的离心率;(Ⅱ)若△OAC
已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点
若椭圆上存在一点C,是四边形OACB为平行四边形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若△OAC的面积为15√5,求这个椭圆的方程.

已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点若椭圆上存在一点C,是四边形OACB为平行四边形.(Ⅰ)求椭圆的离心率;(Ⅱ)若△OAC
⑴设椭圆的方程为x^2/a^2+y^2/b^2=1 (a>b>0)
设C(acosθ,bsinθ),则OC中点M为(0.5acosθ,0.5bsinθ)
设A、B坐标分别为(x1,y1)、(x2,y2),直线AB斜率为k代入到椭圆方程中,得:
x1^2/a^2+y1^2/b^2=1
x2^2/a^2+y2^2/b^2=1
两式相减,得:k=(y1-y2)/(x1-x2)=-(b/a)^2×(x1+x2)/(y1+y2)=1
又M也是AB中点,所以 (x1+x2)/(y1+y2)=0.5acosθ/0.5bsinθ
即bsinθ/acosθ=-(b/a)^2 化简得:
bcosθ+asinθ=0 ……①
同时MF的斜率为1,所以0.5bsinθ/(0.5acosθ-c)=1 化简得:
acosθ-bsinθ=2c ……②
①②式平方相加,得:a^2+b^2=4c^2 ,又a^2-c^2=b^2
∴e=c/a=√10/5
⑵S△OAC=1/2S平行四边形OACB=S△OAB=15√5
利用椭圆焦点弦长公式AB=2ab^2/(a^2-c^2cos^α) α是直线AB的倾斜角
这里,cos^α=1/2 ,所以AB=4ab^2/(2a^2-c^2)
又O到直线AB的距离d=c/√2 且S△OAB=15√5=1/2AB×d
将以上各式代入,化简得:a^2=100,b^2=60
∴椭圆的方程为x^2/100+y^2/60=1
顺便给你证明一边椭圆的焦点弦长公式吧:
设椭圆的方程为x^2/a^2+y^2/b^2=1 (a>b>0)
过焦点F1的直线AB交椭圆于AB两点,倾斜角为α.
另一个焦点为F2,连接AF2与BF2 设AF1=m,BF1=n
则,根据椭圆定义,AF2=2a-m ,BF2=2a-n
在三角形AF1F2中,由余弦定理得
(2a-m)^2=m^2+(2c)^2-2m(2c)cosα
化简得:m=b^2/(a-c*cosα)
同理,再用一次余弦定理,可得n=b^2/(a+c*cosα)
所以AB=m+n=2ab^2/(a^2-c^2cos^α)

已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L 已知椭圆的中心在原点,两焦点F1F2在X轴上,且过点A(一4,3),若向量AF1·向量AF2=O,求已知椭圆的中心在原点,两焦点f1、f2在x轴上,且过点a(-4,3),若向量AF1·向量AF2,求椭圆的标准方程 已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭 椭圆直线题已知椭圆的中心为直角坐标系的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是3和1求:(1)该椭圆的方程(2)设F1,F2为该椭圆的焦点,过椭圆中心O任作一直线与椭圆交 已知中心在坐标原点O,焦点在x轴上,长轴长是短轴长的2倍的椭圆经过点M=(2.1)求椭圆方程 已知椭圆中心在原点,焦点在X轴上,离心率为 根号2/2,过椭圆的右焦点且垂直于长轴的弦长为 根号2①求椭圆的标准方程;②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ.试探究点O到直线L 已知椭圆的中心在原点,两焦点f1、f2在x轴上,且过点a(-4,3),若f1a⊥f2a,求椭圆的标 已知椭圆的中心在坐标原点O,焦点在X轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,椭圆上一点到焦点的最大距离为√2+1(1)求椭圆的标准方程(2)直线l过点P(0,2)且与椭圆相交于A,B 椭圆中心在原点焦点在x轴上离心率e根号2/2,过椭圆的右焦点切垂直于长轴的弦长为根号2:问1.球椭圆的标准方程.2.已知直线l与椭圆相交于PQ两点O为原点且OP垂直于OQ,O到直线l的距离是否是定值? 椭圆中心是坐标原点O,焦点在x轴上,过椭圆左焦点F的直线交椭圆于P,Q两点,OP垂直OQ,求椭圆的离心率取值范围 椭圆中心是坐标原点O,焦点在x轴上,过椭圆左焦点F的直线交椭圆于P,Q两点,OP垂直OQ,求椭圆的离心率取值范围 已知中心在原点,焦点在X轴上的椭圆的离心率为2分之根号2,F1F2为其焦点,一直线过点F1与椭圆相交于A,B两已知中心在原点,焦点在X轴上的椭圆的离心率为2分之根号2,F1F2为其焦点,一直线过点 已知椭圆的中心在原点,焦点在X轴上,过椭圆左焦点F且倾斜角为60°的直线交椭圆与A,B两点,若FA=2FB,求椭圆的离心率. 已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为1/3 1、求椭圆的标准方程 2、过椭圆左顶点作直已知椭圆中心在原点,焦点在x轴上,长轴长等于12,离心率为1/31、求椭圆的标准方程2、过 已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上存在一点若椭圆上存在一点C,是四边形OACB为平行四边形.(Ⅰ)求椭圆的离心率;(Ⅱ)若△OAC 已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点 (1)求椭圆的方程(2)在线段OF上是否 椭圆和向量中的定值已知椭圆的中心为坐标原点O.焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A.B两点,OA向量+OB向量与a向量=(3,-1)共线(1)求椭圆的离心率(2)设M为椭圆上任意一 已知椭圆C中心在原点O焦点在x轴上,其长轴长为焦距的2倍,且过点M(1,2分之3)(1)求椭圆C的标准方程...已知椭圆C中心在原点O焦点在x轴上,其长轴长为焦距的2倍,且过点M(1,2分之3)(1)求椭