设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:56:04
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx
x){nϦnHӨTx:gӞ]/oyCA7QA'QɎ=߽Vg3B@[@+UP#Mdv.H&H.GwO~nP}~޳{t}ˁ_.lNM |9e~qAbȵK

设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx

设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx
结论明显不对.楼主回去对照下题有没写错.

设函数f(x),g(x)在区间[a,b]上连续,且f(a) 设函数f(x)在闭区间[a,b]上连续,a 设函数f(x)在闭区间[a,b]上连续,a 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx 设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至 设函数f(x)在区间【a,b】上有意义,在开区间可导,则()选项:A、f(a)*f(b) 设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(a+1) 一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b) 设函数f(x)=(x+a)/(x+b) (a>b>0),求函数的单调区间,证明其在单调区间上的单调性 设a>0,函数f(x)=(alnx)/x,求f(x)在区间[a,2a]上的最小值f(x)递减。 设f(x),g(x)都是区间【a,b】上的单调递增函数,并且在该区间上,f(x) 设函数f(x)在闭区间【0,2a】上连续,且f(0)=f(2a),试证方程f(x)=f(x+a)在闭区间【0,a】上至少有一个实根 .设函数f(x),g(x)在区间[-a,a]上连续,g(x)为偶函数,且f(-x)+f(x)=2.证明: 设函数f(x)在区间(a,b)内恒满足,|f(x)-f(y)| 设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§ 使f(§)=f(§+a) 设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx 设函数f(x)在闭区间[a,b]上具有二阶导数,且f(x)>0,证明∫(a,b)f(x)dx>f(设函数f(x)在闭区间[a,b]上具有二阶导数,且f(x)>0,证明∫(a,b)f(x)dx>f(a+b/2)(b-a) 若函数f(X) 在区间 (a,b] 上是增函数,在区间 [b,c) 上也是增函数,则f(x) 在区间(a,c) 上是什么函数