如题用反证法证明y=sin(x^2)和y=cos(根号下x)不是周期函数,形如:证明:假设………………因为………………所以与假设相矛盾.故…………是周期函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:39:52
如题用反证法证明y=sin(x^2)和y=cos(根号下x)不是周期函数,形如:证明:假设………………因为………………所以与假设相矛盾.故…………是周期函数
如题用反证法证明y=sin(x^2)和y=cos(根号下x)不是周期函数,形如:
证明:假设………………
因为………………
所以与假设相矛盾.
故…………是周期函数
如题用反证法证明y=sin(x^2)和y=cos(根号下x)不是周期函数,形如:证明:假设………………因为………………所以与假设相矛盾.故…………是周期函数
周期为T的函数满足:f(x)=f(x+T)
1、如果y=sin[x^2]是周期函数,设最小正周期为T
则:sin[x^2]=sin[(x+T)^2]
x^2=(x+T)^2+2kπ
化简得:2Tx+T^2+2kπ=0
如果该函数是周期函数,对任意x,k取任意整数,方程都要成立.
T无解,与假设矛盾.
所以y=sin[x^2]不是周期函数.
2、如果y=cos[√x]是周期函数,设最小正周期为T
则:cos[√x]=cos[√(x+T)]
√x=√(x+T)+2kπ
如果该函数是周期函数,对任意x,k取任意整数,方程都要成立.
T无解,与假设矛盾.
所以y=cos[√x]不是周期函数.
另外也可以用:若f(x)是周期函数,那么f'(x)也应该是周期函数证明.
1.假设y=sin(x^2)是周期函数 则其导函数y'也为周期函数
因为y'=2xcos(x^2) 函数图像振动幅度不断变大 显然不是周期函数
所以与假设矛盾 y=sin(x^2)不是周期函数
2.假设y=cos(根号x)是周期函数 则其导函数y'也为周期函数
因为y'=-sin(根号x)/(2*根号(x)) 函数图像振动幅度不断变小 显然也不是周期函数
所...
全部展开
1.假设y=sin(x^2)是周期函数 则其导函数y'也为周期函数
因为y'=2xcos(x^2) 函数图像振动幅度不断变大 显然不是周期函数
所以与假设矛盾 y=sin(x^2)不是周期函数
2.假设y=cos(根号x)是周期函数 则其导函数y'也为周期函数
因为y'=-sin(根号x)/(2*根号(x)) 函数图像振动幅度不断变小 显然也不是周期函数
所以与假设矛盾 y=cos(根号x)不是周期函数
收起