已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求c的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:00:56
已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求c的取值范围
x͑J@DŽ&ms!ͣ@e[[lP[b ZѤ>ΦR^|Y<O+J?jT0|-n@=-=ԠB4Y@z&)].Ye&'8ǩ.3YuN"5JPNWC;BRu_H[v~;v0(J=$q:KHP&\+[T~ȳ э4*ft9 /E]N,ǯkbE"U uKHꡁV|7"<- c,ZNiW]ȥ

已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求c的取值范围
已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求
c的取值范围

已知函数f(x)=ax^4lnx+bx^4-c在x=1处取得极值-3-c,其中a,b为常数.对任意x>0,不等式f(x)>=-2c^2恒成立.求c的取值范围
因为函数在x=1处取得极值-3-c,
那么有f(1)=b-c=-3-c故得到b=-3.对函数求导,
有f'(x)=(4alnx+a+4b)x^3,
因为x=-1为函数的极值点,
所以有f'(1)=0于是有a+4b=0,于是有a=12.
f(x)=(12lnx-3)x^4-c;f'(x)=48(lnx)x^3,
因为函数要有意义,所以有x>0
那么就有x^3>0所以对于f'(x)>0有x>1,
f'(x)