已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:43:47
已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
x1n0 EcRQ/@zhSQsO9@du_"A HUm=~Ș[R &`^sQcH;bL6T/i{ө. 3&Rfs>l#g,2AR^-B2q!Hc舮.B庸X'ү~qVP/yoT_Nu

已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值

已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
xy+2z=xy+4-2x-2y=(x-2)(y-2).
同理,yz+2x=(y-2)(z-2),zx+2y=(z-2)(x-2).
4=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=16+2(xy+yz+zx),
xy+yz+zx=-6.
(x-2)(y-2)(z-2)=xyz-2(xy+yz+zx)+4(x+y+z)-8=13.
原式=[(x-2)+(y-2)+(z-2)]/(x-2)(y-2)(z-2)
=-4/13.