若α+β=2π/3,则(1-根号3tanα)(1-根号3tanβ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:40:52
若α+β=2π/3,则(1-根号3tanα)(1-根号3tanβ)
x){ѽFsl7<혩alΧۍKmDoҴI*'G~ `}`eI}j0µikzdR$piT]`O?o mcrj[Cmc[<;l+OYT|VI=/Ozںh=@Юxdt%`t| Qb ӆRZvlr`AdOp3 l[TE(*>+^6xq= 'pBd-Ԅ5R5?H2

若α+β=2π/3,则(1-根号3tanα)(1-根号3tanβ)
若α+β=2π/3,则(1-根号3tanα)(1-根号3tanβ)

若α+β=2π/3,则(1-根号3tanα)(1-根号3tanβ)
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)=-根号3
所以tanα+tanβ=-根号3(1-tanαtanβ)
原式=1-根号3(tanα+tanβ)+3tanαtanβ
=1+3=4

利用tan的和角公式:tan(x+y)=(tanx+tany)/(1-tanxtany) 即有
tanx+tany=tan(x+y)(1-tanxtany),注意到tan (α+β)=tan2π/3=-根号3,
所以
(1-根号3tanα)(1-根号3tanβ)
=1-根号3tanα-根号3tanβ+3tanαtanβ
=1-根号3(tanα+tanβ)+3...

全部展开

利用tan的和角公式:tan(x+y)=(tanx+tany)/(1-tanxtany) 即有
tanx+tany=tan(x+y)(1-tanxtany),注意到tan (α+β)=tan2π/3=-根号3,
所以
(1-根号3tanα)(1-根号3tanβ)
=1-根号3tanα-根号3tanβ+3tanαtanβ
=1-根号3(tanα+tanβ)+3tanαtanβ
=1-根号3*tan(α+β)*(1-tanαtanβ)+3tanαtanβ
=1+3(1-tanαtanβ)+3tanαtanβ
=4

收起