点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.试说明△CEF为正三角形.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:03:43
点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.试说明△CEF为正三角形.
x){޴Ɏ]wnӓ]Ov4uM X|m};||ӽtdג'\N:~pQ7맾Xٌ>in@] 7J&H>D5v6(`^o*xg֣ԱQhߣΎ@,gkha Q U1!TŎ@`@F u@)$~@G)'_g0n0agW[k8$A#)O˭,NB`

点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.试说明△CEF为正三角形.
点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.
试说明△CEF为正三角形.

点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.试说明△CEF为正三角形.
证明:∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形

wcnmysb

如图,点C为线段AB上一点,△ACM,△CBN是等边三角形. 如图,点C为线段AB上一点,△ACM,△CBN 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.若P.Q分别为AN,BM中点,说明△CPQ为等边三角形 如图,点C为线段AB上一点,△ACM、△CBN是等边三角形.请你证明:(2)∠MFA=60?)△DEC为等边三角形 已知:点C为线段AB上一点,△ACM.△CBN是等边三角形.求证:AN=BM(自己画图,要求答题带图) 如图,已知点C为线段AB上一点,△ACM与△CBN是等边三角形.求证:AN=BN、 如图,已知点C为线段AB上一点,△ACM与△CBN是等边三角形.求证:AN=BN. C为线段AB上一点,△ACM,△CBN是等边三角形AN,MC交于点D,若AC=3,BC=2,则CD= 如图 点C 为线段AB 上的一点 △ACM,△CBN 是等边三角形 求BF=CF+NF如图 点C 为线段AB 上的一点 △ACM,△CBN 是等边三角形 ,AN ,BM 交于点F 连接CF 求证 BF=CF+NF 如图,c为点线段ab上一点,在△acm和三角形cbn中,ac=mc,bc=nc,∠acm=∠bcn.求证:an=mb 请用初中知识回答!(1)已知:如图(1),点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:AN=BM,这时可以证明—————,得到AN=BM(2)如果去掉“点C为线段AB上一点”的条件,而是让△CBN绕点C旋 23.⑴已知:如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:AN=BM,这时可以证实 ________⑵假如去掉“点C为线段AB上一点”的条件,而是让△CBN绕点C旋转成图2的情形,还有“AN=BM”的结论 已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,AN交CM于点E,BM交CN于点F.求证:1、CE=CF2、EF∥AB图 已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)CE=CF (2)EF∥AB 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.直线AN,MC交于点E ,直线CN,MB交于点F求证:AB平行EF 已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.求证:CE=CF EF∥AB 点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.试说明△CEF为正三角形. 如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.求证:△CEF为等边三角形.