数学上的e是什么东西它用在哪?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:58:18
数学上的e是什么东西它用在哪?
xYr"WyM fh[ۉYLhwwt3B@!=@($$u-V9y(^LD6͛7ɓկ> Cѿv'iUc۝4NJ 8s^~xN։ft'];޵ dѝg?.WWYN&K<֭8R{SqW ׉-N,Yk;8yO"3;\]&xۅX6)<_=v'}N@x]ožo|?B;OAՀ5\EL@fF>޹/m iŠ/ghkr4JUn58D I%B~b4ڙޓF*g@f,C5{A+y7p*x8"\ u{p0&*NK'q %Y"?&D #}hD:HO ++kY/&ePnG֠tA͈=/ⴀ,Mk-( C ݞ"$}-vht/4MZ̠ @:id]fH֞ 43~@UBfg4j\3PE,y/QsCXNtܷyJ}9H=]Q,T ,Gݬu] Bfm2;`\tFw mr@İ7Ꮪ4uB*KzroPc6g8>7hyvabͥHReaxg7~x;]/U( ̑ T$GD@^t`'b}6~K("NFFc`[^J~1;Fy^}?]^6D ؠf!Zw&W"~:ejXJf_n=rD Гh 1#8(Li0@"6K0r=P]zۘ ݯ<)NZ&0  { &=BVDxCM#PH0Dq}B )%{X"ϸb0ҫ -0#OW|.C1kA\M_\4xF{`B>Ηr/fS;:YLkm,%$,&ЅVh ->`t+ЬZ7#W *L0}tgcB3 5mY |Xx1&k2C\x˛tԄM&\݅G[p $'@(Q4 #WNק t_b9SD@ZCt2(/hDr&f'Zth(@RmO[|хzО(L1 e/(^ڽ9:bc1bVw}S tj >!9P,~EVRJe]lyz5k1_{ZwOvwv|te̺jD]VtUJA7O1dJp0 oUVQUP_A ?zGT IK,sņ1YXoZA"Ocө$7Bzpl^2a0y~8N| $=NlҴAoIiDoZ̋.\y64JA zx oyu%%a|,,W}@ YӖmDMTS6f3c ొ⮌VZ5,H:9W/>}x'q7

数学上的e是什么东西它用在哪?
数学上的e是什么东西
它用在哪?

数学上的e是什么东西它用在哪?
这里的e是一个数的代表符号,而我们要说的,便是e的故事.这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1.这个e究竟是何方神圣呢? 在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表.教科书里的对数表,是以10为底的,叫做常用对数(common logarithm).课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角.不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢? 这就要从古早时候说起了.至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的.那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关. 我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息.但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高.有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e).所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的. 包罗万象的e 读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分.令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联.在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能.问题虽然都不一样,答案却都殊途同归地指向e这个数.比如其中一个有名的问题,就是求双曲线y=1/x底下的面积.双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联.我才举了一个例子而已,这本书里提到得更多. 如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了.事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事.比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier).没有听说过?这很正常,我也是读到这本书才认识他的.重要的是要下一个问题.你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什麼计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算.因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的.但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉.最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算. 在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实.比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生.对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达.但是罗必达法则反倒是约翰.伯努利先发现的.不过这无关乎剽窃的问题,他们之间是有协议的. 说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容.伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止於数学领域),就算随便列一列,也有一本书这麼厚.不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架.自家人吵不够,也跟外面的人吵(可说是「表里如一」).连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧. e的「影响力」其实还不限於数学领域.大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的.建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e.这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关,岂不奇妙? 数学其实没那麼难! 我们每个人的成长过程中都读过不少数学,但是在很多人心目中,数学似乎是门无趣甚至可怕的科目.尤其到了大学的微积分,到处都是定义、定理、公式,令人望之生畏.我们会害怕一个学科的原因之一,是有距离感,那些微积分里的东西,好像不知是从哪儿冒出来的,对它毫无感觉,也觉得和我毫无关系.如果我们知道微积分是怎麼演变、由谁发明的,而发明之时还发生了些什麼事(微积分是谁发明的这件事,争论了许多年,对数学发展产生重大的影响),
求采纳