如图,在Rt△ABC中,∠B=90°,BC=5 3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运如图,在Rt△ABC中,∠B=90°,BC=5√3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:44:29
如图,在Rt△ABC中,∠B=90°,BC=5 3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运如图,在Rt△ABC中,∠B=90°,BC=5√3    ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A
xkOPǿB»emiO[av~szcSa͘j b $&8PCKG=]yS #,&M?3SloU~Vۿo| Gv/Tۡ? I>,K`Ќ'ExDbVϽhh}KVzoPyvf=0[÷+~}p] ?gjsܿ-SXy H4|!\~#Y=?F n;8);g >+6_svFP=?L=꼭h.-~~zө]hh+(w{[Nq7x 9Zpv%Y=w"pj6Yg'Oܧ~)F-7oT9oo7VA`# f}͆&Rjw{—C\.s@2Isl@)Q@OpO)I#

如图,在Rt△ABC中,∠B=90°,BC=5 3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运如图,在Rt△ABC中,∠B=90°,BC=5√3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A
如图,在Rt△ABC中,∠B=90°,BC=5 3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运
如图,在Rt△ABC中,∠B=90°,BC=5√3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

如图,在Rt△ABC中,∠B=90°,BC=5 3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运如图,在Rt△ABC中,∠B=90°,BC=5√3 ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A

如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c? 如图,在Rt三角形ABC中,∠C=90°,b+c=24 角A-角B=30°,求a、b、c 如图在Rt△abc中,∠bac=90°,∠b=60°,如图,在Rt△abc中,∠bac=90°,∠b=60°,△ab‘c’可以由△abc绕点a顺时针旋转90°得到,连接cc‘,则∠cc'b'的度数为 如图,在Rt△ABC中,b=2,c=12,解这个直角三角形. 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面积 如图Rt△ABC中,∠C=90°,∠B=30°,求,tan15° 如图,在RT△ABC中,∠C=90°,BC=a,AC=b,AB=c,圆O为RT△ABC的内切圆,求圆O的半径 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,在RT△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=0.6,求tan∠B 如图 在rt△abc中 ∠c 90° tanA=1/2 求∠b的正弦 余弦值 如图 在rt△abc中 ∠c 90° tanA=1/2 求∠b的正弦 余弦值 如图,在Rt△ABC中,∠C=90°,AC=√3,AB=2,求sinA、tan二分之B的值. 如图,在Rt三角形ABC中,∠C=90°,b+c=30 角A减角B=30°,解这个直角三角形. 如图,在RT△ABC中,∠B=90°,AD是△ABC的角平分线在RT△ABC中,∠B=90°,AD是△ABC的角平分线,AE是△的角平分线,DF是△ADE的高,已知∠ADF=75°,求∠C和∠FDE的度数 如图,在RT△ABC中,∠ABC=90°,点D在BC的延长线上,∠D=90°,BD=AB,过点B作BE,求证△ABC全等于△BDE 如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B事对应点如图在RT△ABC中∠BAC=90°∠B=60°△AB'C'可以由△ABC绕点A顺时针旋转90°得到(点B'与点B是对应点,点C