f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cosx的平方) 当sinθ+2cosθ=2时,求f(θ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:07:22
f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cosx的平方) 当sinθ+2cosθ=2时,求f(θ)
xRN@-AMlAMH ċ1 "OGN.B^L3}3S3H"ו ]t/kV>>f.RS,C4>T1N"alExCswG?8GvvkTk*օˊfWX:}~5ݯr T3LXw%rS!;躓Gn"8a&ɤOS r e

f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cosx的平方) 当sinθ+2cosθ=2时,求f(θ)
f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cosx的平方) 当sinθ+2cosθ=2时,求f(θ)

f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cosx的平方) 当sinθ+2cosθ=2时,求f(θ)
f(x)=(1+cosx+cos2x+cos3x)/(1-cosx-2cos²x)
=[(1+cos2x)+(cosx+cos3x)]/(-cosx+1-2cos²x)
=(2cos²x+2cos2xcosx)/(-cosx-cos2x)
= -2cosx(cosx+cos2x)/(cosx+cos2x)
= -2cosx,(cosx+cos2x≠0)
由sinθ+2cosθ=2得sinθ=2(1-cosθ),
结合sin²θ+cos²θ=1,不难求得cosθ=1,或cosθ=3/5,且都符合题意,
而f(θ)= -2cosθ,所以f(θ)= -2或f(θ)= -6/5.
注:cosx+cos3x=2cos2xcosx用的是和化积公式,
相当于cosx+cos3x=cos(2x-x)+cos(2x+x),再用两角和与差的余弦公式而得.