400道因式分解和因式方程 要有题及过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 06:38:37
400道因式分解和因式方程 要有题及过程
xY[oY+VZu>}^ u9}iv q HH24)Uu.}mO<8}ΩսھrW lLNWeLߵK7ӭF4l]q1^{qnfO;A!<0JFxY8kwY"%]H>\X=7kͲd @ʦ |MfC'6j4bs|,#ī"EۂWaZP-72JAu/cм=^8gH{pH(QrZEdmqq1;lZQ r9nWlʝY"hF},QyVq*yx) a\m1"/X.ћ\ 6>=$a;*HF$ˋ&Ng%H<)B0 .#@mbѬ=ql0 =5xU7\YsBHe_fx&T)*""*B*,8y$ N%,ov#m].aGGLܶ/R 虆%n;i=I3c!I ˜*G Yf8sDŽJY3C2/9a} |ZCrms}\_0"r,u2uMձ[j&/B>YQ0MbA?*A(;mDmd&wOS_(ѕaCAA@*3Gĵ(xQghr,%>:LO^G F 峃u.b){R,.b>Oz^m.bpUcpP(+_~Y&˙WL+ŐCQ.魢g_EA&*;e^!]Q+P]6.< b`rĖ1b-~tz9tym|ahO*1?Yuʟ5iȒArB4E<cP'Dc~]Σ.Qh^]Ujf;nlZƊ&ܖ1,]\2'§KcF_'S==~@=[ W/JX!}&^R>@} *J}OW`4EV2M)]-V u/giwj:n%gRi D2wKXL"7`Q`Ӛ.#x CB)^47hM&! Wҥdp =p"OA?!q4Cs M/]F$4}ȧYkJWS/wlQr5qH#7¼*n$l\ne '7YXrtjwfAFS`r%UuEM;9I«^mބ$k2DHMIn5E&V4&Da #XF0aI(Ĥ۰ ǰ1w~ 'VB9aÏio7}kD%amB*ocmۍ_;a (`cvcLʥBzD lJ6wvz ^oiN._ wb72s8] H/Z1X%# t0p}}[,g9l2|#Nz9va,)DܒMj1*28M]¨dzP}YÍFY͊6?Mi#H1oAgq)K.1aJN ן>T+!RouA7͉F (_=s}c&҂抩(4" WÛd7,?B }8KmXe(mq,rdA=K4mn&4jӊ)>F1@w+X/N|JN68x frgd3@|C#RnɀỤ Ԋ@ -SPV U6HQ=Qd+rb w9e Yi,shBef<}C$#5'w8\~L,+2Yy"5zY1g,֧<VHwԅ .-/S7}Ya'tk_^AO~rw5Z@S]J׶`ervlAuדn-MO!

400道因式分解和因式方程 要有题及过程
400道因式分解和因式方程 要有题及过程

400道因式分解和因式方程 要有题及过程
因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)
3.因式分解xy+6-2x-3y=(x-3)(y-2)
4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2
5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)
6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)
7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2
8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)
9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)
10.因式分解a2-a-b2-b=(a+b)(a-b-1)
11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2
12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)
13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)
abc+ab-4a=a(bc+b-4)
(2)16x2-81=(4x+9)(4x-9)
(3)9x2-30x+25=(3x-5)^2
(4)x2-7x-30=(x-10)(x+3)
35.因式分解x2-25=(x+5)(x-5)
36.因式分解x2-20x+100=(x-10)^2
37.因式分解x2+4x+3=(x+1)(x+3)
38.因式分解4x2-12x+5=(2x-1)(2x-5)
39.因式分解下列各式:
(1)3ax2-6ax=3ax(x-2)
(2)x(x+2)-x=x(x+1)
(3)x2-4x-ax+4a=(x-4)(x-a)
(4)25x2-49=(5x-9)(5x+9)
(5)36x2-60x+25=(6x-5)^2
(6)4x2+12x+9=(2x+3)^2
(7)x2-9x+18=(x-3)(x-6)
(8)2x2-5x-3=(x-3)(2x+1)
(9)12x2-50x+8=2(6x-1)(x-4)
40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)
41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)
42.因式分解9x2-66x+121=(3x-11)^2
43.因式分解8-2x2=2(2+x)(2-x)
44.因式分解x2-x+14 =整数内无法分解
45.因式分解9x2-30x+25=(3x-5)^2
46.因式分解-20x2+9x+20=(-4x+5)(5x+4)
47.因式分解12x2-29x+15=(4x-3)(3x-5)
48.因式分解36x2+39x+9=3(3x+1)(4x+3)
49.因式分解21x2-31x-22=(21x+11)(x-2)
50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)
52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)
53.因式分解x(y+2)-x-y-1=(x-1)(y+1)
54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)
55.因式分解9x2-66x+121=(3x-11)^2
56.因式分解8-2x2=2(2-x)(2+x)
57.因式分解x4-1=(x-1)(x+1)(x^2+1)
58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)
59.因式分解4x2-12x+5=(2x-1)(2x-5)
60.因式分解21x2-31x-22=(21x+11)(x-2)
61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)
62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)
63.因式分解下列各式:
(1)3x2-6x=3x(x-2)
(2)49x2-25=(7x+5)(7x-5)
(3)6x2-13x+5=(2x-1)(3x-5)
(4)x2+2-3x=(x-1)(x-2)
(5)12x2-23x-24=(3x-8)(4x+3)
(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)
(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)
(8)9x2+42x+49=(3x+7)^2 .
1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )
A.2 B. 4 C.6 D.8
2.若9x2−12xy+m是两数和的平方式,那么m的值是( )
A.2y2 B.4y 2 C.±4y2 D.±16y2
3.把多项式a4− 2a2b2+b4因式分解的结果为( )
A.a2(a2−2b2)+b4 B.(a2−b2)2
C.(a−b)4 D.(a+b)2(a−b)2
4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )
A.( 3a−b)2 B.(3b+a)2
C.(3b−a)2 D.( 3a+b)2
5.计算:(−)2001+(−)2000的结果为( )
A.(−)2003 B.−(−)2001
C. D.−
6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )
A.M>N B.M≥N C.M≤N D.不能确定
7.对于任何整数m,多项式( 4m+5)2−9都能( )
A.被8整除 B.被m整除
C.被(m−1)整除 D.被(2n−1)整除
8.将−3x2n−6xn分解因式,结果是( )
A.−3xn(xn+2) B.−3(x2n+2xn)
C.−3xn(x2+2) D.3(−x2n−2xn)
9.下列变形中,是正确的因式分解的是( )
A. 0.09m2− n2 = ( 0.03m+ )( 0.03m−)
B.x2−10 = x2−9−1 = (x+3)(x−3)−1
C.x4−x2 = (x2+x)(x2−x)
D.(x+a)2−(x−a)2 = 4ax
10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )
A.x+y−z B.x−y+z C.y+z−x D.不存在
11.已知x为任意有理数,则多项式x−1−x2的值( )
A.一定为负数
B.不可能为正数
C.一定为正数
D.可能为正数或负数或零
二、解答题:
分解因式:
(1)(ab+b)2−(a+b)2
(2)(a2−x2)2−4ax(x−a)2
(3)7xn+1−14xn+7xn−1(n为不小于1的整数)
答案:
一、选择题:
1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.
2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.
3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.
4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.
5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 = −(−)2001,所以答案为B.
6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.
7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).
8.A
9.D 说明:选项A,0.09 = 0.32,则 0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.
10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.
11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.
二、解答题:
(1) 答案:a(b−1)(ab+2b+a)
说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).
(2) 答案:(x−a)4
说明:(a2−x2)2−4ax(x−a)2
= [(a+x)(a−x)]2−4ax(x−a)2
= (a+x)2(a−x)2−4ax(x−a)2
= (x−a)2[(a+x)2−4ax]
= (x−a)2(a2+2ax+x2−4ax)
= (x−a)2(x−a)2 = (x−a)4.
(3) 答案:7xn−1(x−1)2
说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.
抱歉,没有那么多,希望对你有帮助

在网上搜一下,有很多这种题目的,而且带答案

400道因式分解和因式方程 要有题及过程 因式分解、要有过程、谢! 二元一次方程及三元一次方程练习题求8道2元,2道3元,要求有解题过程及答案!拒绝填空,选择,应用题!只要解方程题!还要有解题过程和答案 因式分解解方程如何进行因式分解,尤其是如上x平方带系数的情况,求付详细因式分解过程 初三的一元二次方程题一元二次方程公式法 配方法 因式分解法的题 各4道 分清楚类型 答案和解题过程都要有 1道初二1元2次方程因式分解题2X的平方+7X+5=0 要有具体过程是一道解方程 用因式分解法解下列方程:(要求要有过程) 因式分解及过程,回答正确, 一道高中因式分解题6x^2-13x+6y^2这道题目是不是出错了,如果没有出错,要有解题的思路及过程. 要50道.是计算题 不是应用、选择、填空题 要50道,并且要有过程和结果(过程至少要有一步) 题目的内容是要关于因式分解、分式、二次根式的 还不清楚的问... 用因式分解法解一元二次方程 用公式法和因式分解法解方程x的平方-6X+9=(5-2x)的平方要有完整的过程, 求初二因式分解计算题20道及答案过程. 解方程和因式分解第一个:第二个:第三个:(因式分解) (3)(m+n)(m+n-4)+4要有过程!分我会给的.第三个可以不写~ 第二题用方程,要有过程 要有过程用方程 列方程要有过程 解方程,要有过程 解方程,要有过程