请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 01:49:23
请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么
x){~vxtGOvX/glu}#[ 4T~O³M:&>k|җmkuu  6 l0鲦'{>cBM1X€(/U)//I |m'tQ" `t9 5x:OROM϶5/.H̳9ՓJ

请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么
请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K
我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么

请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么
不是计算行列式,应该是进行初等行变换和初等列变换,变换成最简式后,最后得k=-3

请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么 请问刘老师,关于设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K我想知道A=|k 1 1 1 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|如何变成|k+3 0 0 0 1-k k-1 0 0 1-k 0 k-1 0 1-k 0 0 k-1|行列式的计算我可能忘了点什么 设n阶矩阵A={k 1 .1;1 k .;1;1 1.k}求矩阵A的秩 向刘老师请教一道关于矩阵可逆的题设A是n(n大于等于2)阶矩阵,A^2=A但A不等于E,A*是A的伴随矩阵.证明:A*不可逆 设矩阵A=(k 1 1 1 1 k 1 1设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K 设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1) 设矩阵A=(k 1 1 1 1 k 1 1 1 1 k 1 1 1 1 k) 且R(A)=3 求K 刘老师求帮忙,设A=[1 0 1 0 2 0 1 0 1],求A的特征值跟特征向量,并判断A是否相似于对角矩阵 问刘老师,设a为线性空间V的一个线性变换,A为a在某组基下的矩阵λ1,L,λn是a的n个特征值,则λ1+L+λn=_________求过程,谢谢刘老师 设矩阵列向量A=K(1/3,1/2,1,0)为单位向量,则K为? 刘老师:1.设A,B,C均为n阶可逆矩阵,则(ACB^T)^-1= 2.设A,B均为n阶可逆矩阵,/A/=5,则/B^-1A^kB/=3./A+B^-1/=/A(B+A^-1)B^-1/?没看懂这一步 刘老师 请问这道题怎么算 设三阶矩阵A的一个特征值为-1,并且秩R(A-E)=2、▏2E-A ▏=0,则.Tr(A)=? 设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A^k-1 刘老师您好,请教一道相似矩阵的问题:矩阵A与B相似,如何证明:B(I+AB)^-1=(I+BA)^-1B 设A是n阶矩阵,若存在正整数k,使线性方程组A^kα=0有解向量,且A^(k-1)α≠0请问:为什么A^(k+1)α=0,A^(k+2)α=0.A^(k+n)α=0为什么A^(k-2)α≠0,A^(k-3)α≠0.A^(k-n)α≠0 设方阵A满足A^k=0,证明:矩阵I-A可逆,并且有(I-A)^-1=I+A+A^2+.+A^k-1 刘老师您好!想请教您一个关于矩阵行列式的问题已知A,B均为n阶方阵,且|A|=2,|B|=4,则|(AB)^(-1)-2(AB)|=? 刘老师,能请教您一道关于对阵矩阵特征值的问题吗?设A为n阶非零的对称矩阵,证明:存在nX1矩阵α,使α^TAα不等于0.我百度了一下答案,发现其他网友有提到特征值,但是课上还没有讲到,请问有