已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(n+1)>n/(n+1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 22:50:03
已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(n+1)>n/(n+1)
xN0_;dGٱZ'4ED L, 01CYPyt+F`weyz9Em]haY"'`r?XTlUІ 4] ٣LNyHuwCzҌ,N{in c3L;4N$OIwkhA}\Aw"'.CA)@ a\I(fBڊ[*J" +QJ,d!,$p *]c"Ky ɨ?T-g\WovX1

已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(n+1)>n/(n+1)
已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(n+1)>n/(n+1)

已知函数f(x)=alnx+x^2/2-(1+a)x (x>0)n属于N*,求证:1/ln2+1/ln3+~+1/ln(n+1)>n/(n+1)

参考一下