题型如:a2(a-b)+(b-a).(所有题必须都是这种全是字母的) 共需要100道.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:13:25
题型如:a2(a-b)+(b-a).(所有题必须都是这种全是字母的) 共需要100道.
xWrH,j7-1SUgYEl䢨r/  !5Axq/O@-+~aUKLV^Mݺ:|DXs?ďj՘9Z֯ {cޠ{ې-Ίل;l*>4.S%R{yVE~oޝ !BͰYҹdIgaYMfkFy}&:6E ,3iR,gl>YbfmܥmJf*vEM>ɅSdΩt"[-%0+ZCyrIk#̼b\1le\k]r!}h7B/\q˽򶷝ús%k \]s|2+f`hȜ. + yaŠ:XǂAAc284  Sqkʯope!kO%&J"qݲv y}XA]c'_3Xz#nX7ԝ$H2v$`9ƝXx DমgzÐ6%ӆιAGkך+vyPy_Py~ҹ"<_ E1co KczufwԱ 8+C\q` .=9^,\ ߠcszIsn<+v,9L'L1#ԻY;h)ʝtV~+`iTEu6 r봠ʡϐ*)$G YlKJh#}0(ݘjS"8jɝ<89Wg;7;@B\h8 Y QAHgs6lp~ BS;laoBBsoLk6CC9m>"$|:?͇)I;. +xߢex9}IRbŠFS9~H.Q?+,:Ԋ +eMba&2-IelS%S>sw(*~&*.EtQ {]䐝(Ny.;o۩EHgHe~,Z"BV1jFgCWɓCb4+Tw2*|r.]#z'g nUB**w6)-Zt{PD.7\ Ph<3 y3C7ȏ|Ym0&Cx_4 k&;#-40sWnWo)E>ZqR]5~XWm,܆ӭgOe;:kHy]}~/oҜ

题型如:a2(a-b)+(b-a).(所有题必须都是这种全是字母的) 共需要100道.
题型如:a2(a-b)+(b-a).(所有题必须都是这种全是字母的) 共需要100道.

题型如:a2(a-b)+(b-a).(所有题必须都是这种全是字母的) 共需要100道.
例1、合并同类项
(1)(3x-5y)-(6x+7y)+(9x-2y)
(2)2a-[3b-5a-(3a-5b)]
(3)(6m2n-5mn2)-6(m2n-mn2)
(1)(3x-5y)-(6x+7y)+(9x-2y)
=3x-5y-6x-7y+9x-2y (正确去掉括号)
=(3-6+9)x+(-5-7-2)y (合并同类项)
=6x-14y
(2)2a-[3b-5a-(3a-5b)] (应按小括号,中括号,大括号的顺序逐层去括号)
=2a-[3b-5a-3a+5b] (先去小括号)
=2a-[-8a+8b] (及时合并同类项)
=2a+8a-8b (去中括号)
=10a-8b
(3)(6m2n-5mn2)-6(m2n-mn2) (注意第二个括号前有因数6)
=6m2n-5mn2-2m2n+3mn2 (去括号与分配律同时进行)
=(6-2)m2n+(-5+3)mn2 (合并同类项)
=4m2n-2mn2
例2.已知:A=3x2-4xy+2y2,B=x2+2xy-5y2
求:(1)A+B (2)A-B (3)若2A-B+C=0,求C.
(1)A+B=(3x2-4xy+2y2)+(x2+2xy-5y2)
=3x2-4xy+2y2+x2+2xy-5y2(去括号)
=(3+1)x2+(-4+2)xy+(2-5)y2(合并同类项)
=4x2-2xy-3y2(按x的降幂排列)
(2)A-B=(3x2-4xy+2y2)-(x2+2xy-5y2)
=3x2-4xy+2y2-x2-2xy+5y2 (去括号)
=(3-1)x2+(-4-2)xy+(2+5)y2 (合并同类项)
=2x2-6xy+7y2 (按x的降幂排列)
(3)∵2A-B+C=0
∴C=-2A+B
=-2(3x2-4xy+2y2)+(x2+2xy-5y2)
=-6x2+8xy-4y2+x2+2xy-5y2 (去括号,注意使用分配律)
=(-6+1)x2+(8+2)xy+(-4-5)y2 (合并同类项)
=-5x2+10xy-9y2 (按x的降幂排列)
例3.计算:
(1)m2+(-mn)-n2+(-m2)-(-0.5n2)
(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)
(3)化简:(x-y)2-(x-y)2-[(x-y)2-(x-y)2]
(1)m2+(-mn)-n2+(-m2)-(-0.5n2)
=m2-mn-n2-m2+n2 (去括号)
=(-)m2-mn+(-+)n2 (合并同类项)
=-m2-mn-n2 (按m的降幂排列)
(2)2(4an+2-an)-3an+(an+1-2an+1)-(8an+2+3an)
=8an+2-2an-3an-an+1-8an+2-3an (去括号)
=0+(-2-3-3)an-an+1 (合并同类项)
=-an+1-8an
(3)(x-y)2-(x-y)2-[(x-y)2-(x-y)2] [把(x-y)2看作一个整体]
=(x-y)2-(x-y)2-(x-y)2+(x-y)2 (去掉中括号)
=(1--+)(x-y)2 (“合并同类项”)
=(x-y)2
例4求3x2-2{x-5[x-3(x-2x2)-3(x2-2x)]-(x-1)}的值,其中x=2.
分析:由于已知所给的式子比较复杂,一般情况都应先化简整式,然后再代入所给数值x=-2,去括号时要注意符号,并且及时合并同类项,使运算简便.
原式=3x2-2{x-5[x-3x+6x2-3x2+6x]-x+1} (去小括号)
=3x2-2{x-5[3x2+4x]-x+1} (及时合并同类项)
=3x2-2{x-15x2-20x-x+1} (去中括号)
=3x2-2{-15x2-20x+1} (化简大括号里的式子)
=3x2+30x2+40x-2 (去掉大括号)
=33x2+40x-2
当x=-2时,原式=33×(-2)2+40×(-2)-2=132-80-2=50
例5.若16x3m-1y5和-x5y2n+1是同类项,求3m+2n的值.
∵16x3m-1y5和-x5y2n+1是同类项
∴对应x,y的次数应分别相等
∴3m-1=5且2n+1=5
∴m=2且n=2
∴3m+2n=6+4=10
本题考察我们对同类项的概念的理解.
例6.已知x+y=6,xy=-4,求:(5x-4y-3xy)-(8x-y+2xy)的值.
(5x-4y-3xy)-(8x-y+2xy)
=5x-4y-3xy-8x+y-2xy
=-3x-3y-5xy
=-3(x+y)-5xy
∵x+y=6,xy=-4
∴原式=-3×6-5×(-4)=-18+20=2
说明:本题化简后,发现结果可以写成-3(x+y)-5xy的形式,因而可以把x+y,xy的值代入原式即可求得最后结果,而没有必要求出x,y的值,这种思考问题的思想方法叫做整体代换,希望同学们在学习过程中,注意使用.
三、练习
(一)计算:
(1)a-(a-3b+4c)+3(-c+2b)
(2)(3x2-2xy+7)-(-4x2+5xy+6)
(3)2x2-{-3x+6+[4x2-(2x2-3x+2)]}
(二)化简
(1)a>0,b

啊?
因式分解吗?
书上有那么多!

建议你写2a(a-b)+(b-a)。