已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).若f(3)=2,求使h(x若f(3)=2,求使h(x)>0成立的x的集合
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 11:51:53
xQNPkcpaK*2TAEƨL`-yCYč+%w9UL{8瓳Qչko4V
=KR Jh>"rj{#q|0mŝ1G)ƕd7̓qshȩ"1mhцY4m*{_͜BZUE3%AI9} O>= ¹7-!/1-|DeVuN`5DL$q%rWx4&!4}Ūz&wq H[[K'/߯RcdjEH.^m&
`9?k@09{+q l^CTF ͦ
已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).若f(3)=2,求使h(x若f(3)=2,求使h(x)>0成立的x的集合
已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).若f(3)=2,求使h(x
若f(3)=2,求使h(x)>0成立的x的集合
已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).若f(3)=2,求使h(x若f(3)=2,求使h(x)>0成立的x的集合
根据f(3)=2这个条件,我们可以求出a=2.
那么,h(x)=log2 (1+x)/(1-x)
要求当 h(x)>0 x的范围,其实就是求 (1+x)/(1-x)>1 (此处把0看作log2 1)
当然还要联立 1+x>0 和 1-x>0 两个式子 ,求由以上三个式子组合的方程组!
最后得出:0
已知函数f(x)=loga(x+1),g(x)=loga(1-x).求f(x)+g(x)定义域;判断f(x)+g(x)的奇偶性
已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1) (3)求使f(x)+g(x)
已知函数f(x)=LOGa(x+1).g(x)LOGa(1-x),a>0.a不等于1.求f(x)-g(x)的定义域和奇偶性
已知函数y=g(x)与f(x)=loga(x+1)(0
已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1)已知函数f(x)=loga(x+1),g(x)=loga(1-x)(其中a>0,且a≠1)(1)判断函数f(x)-g(x)的奇偶性,并予以证明(3)求使f(x)+g(x)
已知函数f(x)=loga(1-x),g(x)=loga(x+1)(a>0,且a≠1),求函数F()已知函数f(x)=loga(1-x),g(x)=loga(x+1)(a>0,且a≠1),1、求函数F(x)=f(x)+g(x)的定义域;2、若函数G(x)=f(x)-g(x),b,c,∈(-1,1),求证:G(b)+G(c)=G(b+c/1+bc)
已知函数f(x)=loga(1+x) ,g(x)=loga(1-x),(a>0,且a不等于1) 判断函数F(x)=f(x)-g(x)的奇偶...已知函数f(x)=loga(1+x) ,g(x)=loga(1-x),(a>0,且a不等于1) 判断函数F(x)=f(x)-g(x)的奇偶性,并证明.解不等式F(x)=f(x)-g(x)>0
已知函数f(x)=loga(1+x) ,g(x)=loga(1-x),(a>0,且a不等于1) 判断函数F(x)=f(x)-g(x)的奇偶...已知函数f(x)=loga(1+x) ,g(x)=loga(1-x),(a>0,且a不等于1) 判断函数F(x)=f(x)-g(x)的奇偶性,并证明.解不等式F(x)=f(x)-g(x)>0
已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).若f(3)=2,求使h(x若f(3)=2,求使h(x)>0成立的x的集合
已知函数f(x)=loga(1-x)+loga(x+3)(0
已知函数f(x)=loga(1-x)+loga(x+3)【0
已知函数f(x)=loga(1-x)+loga(3+x)(0
已知函数f(x)=loga(x+1)+loga(3-x)(0
已知函数f(x)=loga(x+1)+loga(3-x)(0
已知函数f(x)=loga(1-x)+loga(x+3))(0
已知函数f(x)=loga(1-x)+loga(x+3) (0
已知函数f(x)=loga(x+1) g(x)=loga(4-2x) (a>0,且a≠1) 求使函数f(x)-g(x)的值为正数的x的取值范围
:已知函数f(x)=loga(x+1)(a>1)(1)若f(x)在区间【m,n】(m>-1)已知函数f(x)=loga(x+1)(a>1)(1)若f(x)在区间【m,n】(m>-1)上的值域为【loga(p/m),loga(p/n)】,求实数p的取值范围(2)设函数g(x)=loga(x²-3x+3),F(x)=a^f(x)-g(x