设f(x,y)在有界闭区域D上连续且非负,证明:若∫∫f(x,y)dσ=0,则f(x,y)恒等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:25:57
xn@_T $+>o$7=kژ:UU@HU.&-x-z\h7F|ӿByyf|ɜl2٤f,4;Z]tI6wݯҊ^M
*{V}(=*ZDكLIO]}ف,cCXl鋋X>]W)a}}|#6LTɥ,f8{CGE*~ʸ︵RjE 4AV3.c'$ns
B4`]ߴ \ A6k֑
1ƪ14U
设f(x,y)在有界闭区域D上连续且非负,证明:若∫∫f(x,y)dσ=0,则f(x,y)恒等于0
设f(x,y)在有界闭区域D上连续且非负,证明:若∫∫f(x,y)dσ=0,则f(x,y)恒等于0
设f(x,y)在有界闭区域D上连续且非负,证明:若∫∫f(x,y)dσ=0,则f(x,y)恒等于0
本质上是证明一个不等式,
这里直接计算了二重积分,如果可以的话,利用几何意义会更简洁,
设f(x,y)在有界闭区域D上连续且非负,证明:若∫∫f(x,y)dσ=0,则f(x,y)恒等于0
设函数f(x,y)在区域D上有偏导数且偏导数有界,求证f(x,y)在区域D上连续
设函数f(x,y)在区域D上有偏导数且偏导数有界,求证f(x,y)在区域D上连续
设f(x,y)在有界闭区域D上连续,则下图?
利用有限覆盖定理证明下述结论:如果D是平面R^2上的有界闭区域且函数f(x,y)在D连续,则函数f(x,y)在区域D有界
关于数学分析的证明题设函数f(x,y),g(x,y)在有界闭区域D上有连续偏导数,且f(x,y)=g(x,y),对任意A(x,y)∈ ∂D,求证:存在X0∈D^0,使得▽f(X0)=▽g(X0)
利用有限覆盖定理证明下述结论:如果D是平面R^2上的有界闭区域且函数f(x,y)在D连续,则……利用有限覆盖定理证明下述结论:如果D是平面R^2上的有界闭区域且函数f(x,y)在D连续,则函数f
若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部的唯一的极值点,且 f(若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部的唯一的极值点,且 f(x,y)在该点取极大值,则 (x0,y0)是 f(x,y)在D上的最大值
如果函数f(x,y)在有界闭区域D上连续,则f(x,y)必在D上取得最大值和最小值.判断题
证明:若函数f(x,y)在有界闭区域D上连续,函数g(x,y)在D上可积,且g(x,y)≥0,(x,y)属于D,则至少存在一点(a,b)属于D,使得∫∫(区域D)f(x,y)g(x,y)dΔ=f(a,b)∫∫(区域D)g(x,y)dΔ
高数 重积分,设f(x,y)在闭区域D=|(x,y)|x^2+y^2=0|上连续,且f(x,y)=【根号下(1-x^2+y^2)】-π分之8倍∫∫√R^2-x^2-y^2dxdy,求f(x,y)
设函数f(x)在[0,1]上连续且非负,证:存在ζ∈(0,1)使ζf(ζ)=∫(1,ζ)f(x)dx
二重积分题 ,设f(x,y)在区域D:0
若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部唯一的极值点,且f(x,y)在该点取极大值,则f(x,y)在点(x0,y0)取得它在D上的最大值.请问为什么不对啊?
设函数y=f(x)在[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
一元函数极值与二元函数极值,下面那句话对一元函数是成立的,为什么对二元函数不成立呢?若(x0,y0)为有界闭区域D上连续的函数f(x,y)在D内部唯一的极值点,且f(x,y)在该点取极大值,则f(x,y)在点(x
设f(x)在[a,b]上连续,且a