定义在(0,+∞)上的单调函数f(x)满足.任意x∈(0,+∞),有f[f(x)-lnx]=1则函数∫e1f(x)dx=?∫e1f(x)dx中e在上1在下

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:11:26
定义在(0,+∞)上的单调函数f(x)满足.任意x∈(0,+∞),有f[f(x)-lnx]=1则函数∫e1f(x)dx=?∫e1f(x)dx中e在上1在下
xQN0Dq03(E,*QYh+Jb@T *mb's0|w{8-V1kȣkHOi_HQi\m|(LcGQ+Gr6C.gy`X.'[K>0ȃ\C{o>_B?R^<sh"Zk`"/'FH J0z@%'˦w9^!&@ET!P}^5xA0W'0p 0?`&Lm xZ

定义在(0,+∞)上的单调函数f(x)满足.任意x∈(0,+∞),有f[f(x)-lnx]=1则函数∫e1f(x)dx=?∫e1f(x)dx中e在上1在下
定义在(0,+∞)上的单调函数f(x)满足.任意x∈(0,+∞),有f[f(x)-lnx]=1则函数∫e1f(x)dx=?
∫e1f(x)dx中e在上1在下

定义在(0,+∞)上的单调函数f(x)满足.任意x∈(0,+∞),有f[f(x)-lnx]=1则函数∫e1f(x)dx=?∫e1f(x)dx中e在上1在下
由于f(x)单调,则f(x)-lnx=C,C为常数,则f(x)=lnx+C,取x=C,得f(C)=lnC+C=1,而取C=1时满足方程,由单调性可知,C=1;
则f(x)=lnx+1;
∫e1f(x)dx=∫lnxdx+∫dx|(x=1到x=e)=xlnx-∫dx+∫dx|(x=1到x=e)=xlnx|(x=1到x=e)=elne-1ln1=e

若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那f(x)是不是单调增函数若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上是单调增函数,那 定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数f(x)在R上是单调增函数;为什么如果是定义在R上的函数f(x)在区间(-∞,0]上是单调增函数, 定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1) 若定义在实数集R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,﹢∞)上也是单调增函数若定义在实数集R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,﹢∞)上也是单调增函数,则 已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x²+5x+6)的单调区间为____ 已知函数f(x)是定义在(0,+∞)上的增函数,则函数f(-x^2+5x+6)的单调区间为 已知函数f(x)是定义在(0,+∞)上的增函数 则函数f(-x^2+5x+6)的单调区间为? 函数f(x)是定义在R上的奇函数,且f(2)=0 f(x)在[0,1]上单调递增,在(1,+∞)上单调递减,不等式f(x)≥0解集是拜求步骤 已知定义在实数集R上的偶函数f(x)在区间[0,﹢∞)上是单调增函数求证函数f(x)在区间﹙-∞,0]上是单调减函数 证明定义在(0,1)上的函数f(X)=2^x/(4^x+1)是单调减函数. 若定义在R上的函数f(x)是奇函数,且在(0,+∞)上单调递增,f(1)=0,则不等式xf(x)>0的 急设定义在R上的函数,f(x)在[0,+∞)上单调递增,若f(m)>f(-1)急设定义在R上的函数,f(x)在[0,+∞)上单调递增,若f(m)>f(-1),则m的取值范围是 .定义在R上的偶函数,f(x)在[0,+∞)上单调递增,若f(m)>f(-1), 已知定义在实数集R上的偶函数f(x)在区间[0,﹢∞)上是单调递增函数.若f(x) 三角函数 若函数y=f(x)是定义在[0,1/2]上的单调减函数,则函数f(cosx)的单调增区间为_____ 设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(x-1/5)大于等于2有急用的、 设函数f(x)是定义在(0,+∞)上的单调递增函数,f (x)=f(x/y)+f(y),f(3)=1,证明f(x)+f(x-1/5)大于等于2急用、、 已知定义在R上的函f(x)满足f(x)=f(4-x),又函数f(x+2)在[0,+∞]上单调递减.(1)求不等式f(3x)>f(2x-1)的 已知定义在R上的函数F(X)满足F(X+Y)=F(X)+F(Y),当X>0时,F(X)<0,求证f(x)在(-∞,+∞)上单调递减,