求解 高三数学题在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,向量AP=x倍的向量AB+y倍的向量AD,当点P在Ω上运动时,2x+3y的最大值?答案是二分之七,请问应该怎么解?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:19:47
xNP_K%C)]hRv?nEs j 7!gNەsąKj2L.ee58;n+lzamفVViI'{^g.uwQ)8}ulz
?\dN}A i
求解 高三数学题在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,向量AP=x倍的向量AB+y倍的向量AD,当点P在Ω上运动时,2x+3y的最大值?答案是二分之七,请问应该怎么解?
求解 高三数学题
在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,向量AP=x倍的向量AB+y倍的向量AD,当点P在Ω上运动时,2x+3y的最大值?
答案是二分之七,请问应该怎么解?
求解 高三数学题在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,向量AP=x倍的向量AB+y倍的向量AD,当点P在Ω上运动时,2x+3y的最大值?答案是二分之七,请问应该怎么解?
令B(0,0) A(0,2e) C(2f,0) D(2f,2e) E(0,e) F(f,0)
直线EF:y=-e/f*x+e
直线ED:y=e/2f*x+e
直线FD:y=2e/f*x-2e
向量AB=(0,-2e)
向量AD=(2f,0)
向量AP=a(0,-2e)+b(2f,0)=(2bf,-2ae)
所以P(2bf,2e-2ae)
因为P点在Ω上运动,所以
2e-2ae>=-e/f*2bf+e 2e-2ae>=2e/f*2bf-2e 2e-2ae=-2b 2-a>=2b 1-2a
求解 高三数学题在矩形ABCD中,E、F分别为AB、BC的中点,记△DEF三边及内部组成的区域为Ω,向量AP=x倍的向量AB+y倍的向量AD,当点P在Ω上运动时,2x+3y的最大值?答案是二分之七,请问应该怎么解?
矩形ABCD中,E、F分别在BC、AD上,矩形ABCD∽矩形ECDF,且AB=2,S矩形ABCD=3S矩形ECDF,求S矩形ABCD.利用相似多边形的性质求解
在矩形ABCD中,E,F分别在BC,AD上,矩形ABCD∽矩形ECDF,且AB=2,S矩形ABCD=3S矩形ECDF.试求S矩形ABCD
矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,试求S矩形ABCD
如图 矩形ABCD中,E、F分别在BC、AD上,矩形ABCD∽矩形ECDF且AB=2,S矩形ABCD=3S矩形ECDF,试求S矩形ABCD
如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF,试求S矩形ABCD
矩形abcd中,e,f分别在bc,ad上,矩形abcd相似于矩形ecdf且ab=2矩形abcd面积=3倍矩形ecdf面积,求矩形abcd面
矩形ABCD中,点E、F分别在BC,AD上,矩形ABCD∽矩形ECDF,S矩形ABCD=3S矩形ECDF,AB=12m,求S矩形ABCD.
矩形ABCD中,点E、F分别在BC,AD上,矩形ABCD∽矩形ECDF,S矩形ABCD=3S矩形ECDF,AB=4m,求S矩形ABCD面积
如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,试求S矩形ABCD.图片:?t=1304004559390
在四棱锥P-ABCD中,ABCD是矩形,PA垂直于平面ABCD,PA=AD=1,AB=根号三,F是PD的中点,点E在CD上移动,求三棱锥E-PAB的体积
三道高中数学题(1)、正四面体ABCD中,在面上到棱AB和C、D、两点的距离都相等的点有______个.(2)、矩形ABCD中,E、F分别为AB、BC之中点,设 △DEF内及三边的区域为Ω,动点P在Ω内且向量 AP =x AB
在矩形ABCD中,点E,F,G,H为各边中,证明EFGH为平行四边形,在EFGH中abcd为各边中点证明abcd为矩形用中位线
在矩形ABCD中,点E,F,G,H为各边中,证明EFGH为平行四边形,在EFGH中abcd为各边中点证明abcd为矩形用中位线
初二数学题矩形在矩形ABCD中,AB=3,BC=4,P是BC上一动点,PF垂直AC于点F,PE垂直BD于点E,求PE+BD的值
在矩形ABCD中,E、F分别为AB、CD的中点,如果矩形ABCD∽矩形EFCB,那么它们的相似比
在矩形ABCD中,E,F分别为AB,CD的中点,如果矩形ABCD∽矩形EFCB,那么他们的相似比为多少?
在矩形ABCD中,E,F分别为AB,CD的中点,如果矩形ABCD相似于矩形BCFE,那么AD:AB=