函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在实数c,使f(c)>0的否定是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:37:11
函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在实数c,使f(c)>0的否定是什么?
xJ@_e@&bA4.| QB2&A6Zihk)^mH&.2'\w30wwf4Cn3B

函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在实数c,使f(c)>0的否定是什么?
函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在实数c,使f(c)>0的否定是什么?

函数f(x)=4x^2-2(p-2)x-2p^2-p+1在区间[-1,1]上至少存在实数c,使f(c)>0的否定是什么?
至少存在一点C使f(c) >0,也就是说 最大值>0
二次函数看f(x)=4x²-2(p-2)x-2p²-p+1
开口向上,所以最大值在端点 取到
f(-1)=-2p² +p+1 f(1)=-2p² -3p+9
函数的对称轴为 (p-2)/4
当 (p-2)/4 ≥0 的时候 ,即p≥2
函数的最大值为 f(-1)
-2p² +p+1>0 在p≥2 无解
当 (p-2)/4