直角梯形abcd中,ab||cd,角d=90度,e为bc上一点be=ec=dc求 角aec=3角bae

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:33:58
直角梯形abcd中,ab||cd,角d=90度,e为bc上一点be=ec=dc求 角aec=3角bae
xRj@ NĖj1#/0PqS\X)% *tQDQD]Z"Į &"Q覴=9Li߁2\M1en I';}&vkv=cWڀ;^B|!,0q.|`bIʯ< Xo,' y@`WE& @t:~(F0!@pp-5 Zuݙ7P kVT ީ$rb6}EqHz$jJ1$2誨t-Ea6zreOc{\иp@O<

直角梯形abcd中,ab||cd,角d=90度,e为bc上一点be=ec=dc求 角aec=3角bae
直角梯形abcd中,ab||cd,角d=90度,e为bc上一点be=ec=dc求 角aec=3角bae

直角梯形abcd中,ab||cd,角d=90度,e为bc上一点be=ec=dc求 角aec=3角bae
证明:
取AD的中点F,连接EF
因为E是BC的中点
所以EF是梯形的中位线
所以EF//AB//DC
所以∠CDE=∠DEF,∠AEF=∠BAE
因为∠ADC=90度,
所以EF⊥AD
所以直线EF是AD的垂直平分线
所以∠DEF=∠AEF
因为CD=CE
所以∠CDE=∠CED
因为EF//AB//DC
所以∠CDE=∠DEF,∠AEF=∠BAE
(前面已经证到∠DEF=∠AEF)
所以∠CED=∠DEF=∠AEF
即 ∠AEC=3∠BAE

http://zhidao.baidu.com/question/108478059.html?an=0&si=1