矩阵习题.线性空间V为由基函数x1=(e^at)cos(bt),x2=(e^at)sin(bt),x3=t(e^at)cos(bt),x4=t(e^at)sin(bt),x5={t^2[(e^at)cos(bt)]}/2 ,x6={t^2[(e^at)sin(bt)]}/2生成的实数域上的线性空间,求微分算子D在这组基下的矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:50:32
矩阵习题.线性空间V为由基函数x1=(e^at)cos(bt),x2=(e^at)sin(bt),x3=t(e^at)cos(bt),x4=t(e^at)sin(bt),x5={t^2[(e^at)cos(bt)]}/2 ,x6={t^2[(e^at)sin(bt)]}/2生成的实数域上的线性空间,求微分算子D在这组基下的矩阵
矩阵习题.
线性空间V为由基函数x1=(e^at)cos(bt),x2=(e^at)sin(bt),x3=t(e^at)cos(bt),
x4=t(e^at)sin(bt),x5={t^2[(e^at)cos(bt)]}/2 ,x6={t^2[(e^at)sin(bt)]}/2
生成的实数域上的线性空间,求微分算子D在这组基下的矩阵
矩阵习题.线性空间V为由基函数x1=(e^at)cos(bt),x2=(e^at)sin(bt),x3=t(e^at)cos(bt),x4=t(e^at)sin(bt),x5={t^2[(e^at)cos(bt)]}/2 ,x6={t^2[(e^at)sin(bt)]}/2生成的实数域上的线性空间,求微分算子D在这组基下的矩阵
微分算子D在这组基下的变换为:
Dx1= ax1 - bx2
Dx2= bx1 + ax2
Dx3= x1 + ax3 - bx4
Dx4= x2 + bx3 + ax4
Dx5= x3 + ax5 - bx6
Dx6= x4 + bx5 + ax6
设微分算子D在这组基下的矩阵为A:
D(x1,x2,x3,x4,x5,x6) = (x1,x2,x3,x4,x5,x6)A
A =
a b 1 0 0 0
-b a 0 1 0 0
0 0 a b 1 0
0 0 -b a 0 1
0 0 0 0 a b
0 0 0 0 -b a