如图,四边形ABCD是正方形,G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F,求证:AF-BF=EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:51:05
如图,四边形ABCD是正方形,G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F,求证:AF-BF=EF
如图,四边形ABCD是正方形,G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F,求证:AF-BF=EF
如图,四边形ABCD是正方形,G是BC上的任意一点,DE垂直AG于点E,BF平行DE,且交AG于点F,求证:AF-BF=EF
证明:如图,∵正方形ABCD,
∴AB=AD,∠BAD=∠BAG+∠EAD=90°,
∵DE⊥AG,
∴∠AED=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
又∵BF∥DE,
∴∠AEB=∠AED=90°,
在△AED和△BFA中,
∵ ∠AED=∠AED ∠ADE=∠BFA AD=AB ,
∴△AED≌△BDA(AAS),
∴BF=AE,
∵AF-AE=EF,
∴AF-BF=EF;
即AF=BF+EF
证明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中,∠AFB=∠AED∠ADE=∠BAFAD=AB...
全部展开
证明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在△ABF与△DAE中,∠AFB=∠AED∠ADE=∠BAFAD=AB,
∴△ABF≌△DAE(AAS).
∴BF=AE.
∵AF=AE+EF,
∴AF-BF=EF.
收起