甘油在脂肪代谢中是怎样代谢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:25:31
甘油在脂肪代谢中是怎样代谢
xYR~_k^r9rn{H J^@FA #g!3H>zz~>===RrMO;y`_݊I sg!zٚ#/ϧܧ?|Hƥ_YgF/63MED$*EEeӛ0DjqIL]=ѣW,;Z>&U7anKvܕ-Q an{D`KYsXQ~-E巳αቿRn/8Kl9L#In>\#1,ONIWi*G3{ž%L8l{$Cor|"֚&u }}_c:IvELPZbWxX˻z¶$7cz xA_'Y0<R+IhxlkXͫW8YEsqt `A v xV= j7" +k =T7.׍Ύ"owGZbQ> ̂w: l Ky1( Oڴ0W /}gCFbHZ_SXD/cl Fݨ;CA(-hh#l `|H'w* agl6L&<^Bn?vW*oBSnrb#Eģ5t0bucѶjvR÷o kw1֧jSzOx&[՜ 2%xlsUѨH!1X< ltaD{HA c$F: z5%xOIib~ j_`B8<7<⟧tB^si n=ʀ%a_??wO }ER]I­$=]7V+ ²(ܼ5f/ͣI Fe U UR,ɓjsuُ6.ȥWKU,§h(U G{4B$w) Qu6NKMf sD@TDu ̿z#s'i#LW ImS%4:120=bnU8|5S"0ֿdTN)+htzV VF,9"agAϕOҔk1[Y ΘSDW?qp|-i?2.*Ckh2 k[MVbFP:efaL% #5Ar,EOKm*h2@Bm*ۄySCPEdb@ +kVu\8o6.S1Ӛq4ZKp~mF^*%T!OȣnFg~@l0 N=c瀯CbKSif vy7C$^s8usjRkY? Z. *}VXҬq(>_E,qN P6f>[I%nn5%u;vdӱ&_.r#-Kܽ?ߤT&%,\c(**v5,7 _˨:E@\Њh 3X]x\aq ZgO^m w4,ShR@_yfn)KfwO$Ba&b@?{'Le)ANƵC}WtJF9 6T~o\gE>-Y*MI^<|ʠT=6wab"yQbKTix}bET|?Z^nK 0%Yu7w-zM20#Gt5ZGoG:EVy@I)KOi?Apv YI,R&lOH\Tԍ~rĦH^hP':hߊrv'_,+bc+k^2f2b 6vbpj#:RS:pd-'~Gt(!A fu?ɵ@yA$67杮i.&m7EZFI>soE0ZL@2@rVɟJwr({Ѷ p$zLeY wTF! S"He:xҐ~+*jRofLjs.Pq~6/2DJo~a;d#Ne`IG=pGTZ9sJW O.\F?ѯ\FwG7&&?A\䨺Nyve%S)ԳCiq*a6|ci!oboSW3@=JnTjݒ? !B@ƈC L &kT]i[[YM"&eE5Du]h\!LNC&MD*u(Ut@ 34whX!KSEv̢!H':iRU~!,Hv1[TT[hj u}TY$ݶv; qi/sʳܳr5PMtl|@LL \Sd/ߍ<{o2Ļ# $t0.ixM(n2F9o2V |!>0./ = e}ly_?/[

甘油在脂肪代谢中是怎样代谢
甘油在脂肪代谢中是怎样代谢

甘油在脂肪代谢中是怎样代谢
甘油三酯代谢
  (一)合成代谢
  甘油三酯是机体储存能量及氧化供能的重要形式. 1?合成部位及原料 肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意: 豆制品促进脂肪代谢
  肝细胞能合成脂肪,但不能储存脂肪.合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用.若肝合成的甘油三酯不能及时转运,会形成脂肪肝.脂肪细胞是机体合成及储存脂肪的仓库. 合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供.其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成. 2?合成基本过程 ①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯. ②甘油二酯途径:肝细胞和脂肪细胞的合成途径. 脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油.
  (二)分解代谢
  即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化. 甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能.
  (三)脂肪酸的分解代谢—β-氧化
  在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障.其氧化具体步骤如下: 1. 脂肪酸活化,生成脂酰CoA. 2.脂酰CoA进入线粒体,因为脂肪酸的β-氧化在线粒体中进行.这一步需要肉碱的转运.肉碱脂酰转移酶I是脂酸β氧化的限速酶,脂酰CoA进入线粒体是脂酸β-氧化的主要限速步骤,如饥饿时,糖供不足,此酶活性增强,脂肪酸氧化增强,机体靠脂肪酸来供能. 3.脂肪酸的β-氧化,基本过程(见原书) 丁酰CoA经最后一次β氧化:生成2分子乙酰CoA 故每次β氧化1分子脂酰CoA生成1分子FADH2,1分子NADH+H+,1分子乙酰CoA,通过呼吸链氧化前者生成2分子ATP,后者生成3分子ATP. 4?脂肪酸氧化的能量生成 脂肪酸与葡萄糖不同,其能量生成多少与其所含碳原子数有关,因每种脂肪酸分子大小不同其生成ATP的量中不同,以软脂酸为例;1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,而所有脂肪酸活化均需耗去2分子ATP.故1分子软脂酸彻底氧化共生成: 7×2.5+7×1.5+8×10-2=106分子ATP 以重量计,脂肪酸产生的能量比葡萄糖多.
  (四)脂肪酸的其他氧化方式
  1?不饱和脂肪酸的氧化,也在线粒体进行,其与饱和脂肪酸不同的是键的顺反不同,通过异构体之间的相互转化,即可进行β-氧化. 2?过氧化酶体脂酸氧化:主要是使不能进入线粒体的二十碳、二十二碳脂肪酸先氧化成较短的脂肪酸,以便能进入线粒体内分解氧化,对较短键脂肪酸无效. 3?丙酸的氧化:人体含有极少量奇数碳原子脂肪酸氧化后还生成1分子丙酰CoA,丙酰CoA经羧化及异构酶作用转变为琥珀酰CoA,然后参加三羧酸循环而被氧化.
  (五)酮体的生成及利用
  酮体包括乙酰乙酸、β-羟丁酸、丙酮.酮体是脂肪酸在肝分解氧化时特有的中间代谢物,脂肪酸在线粒体中β氧化生成的大量乙酰CoA除氧化磷酸化提供能量外,也可合成酮体.但是肝却不能利用酮体,因为其缺乏利用酮体的酶系. 1?生成过程: 2?利用:肝生成的酮体经血运输到肝外组织进一步分解氧化. 总之肝是生成酮体的器官,但不能利用酮体,肝外组织不能生成酮体,却可以利用酮体. 3?生理意义 长期饥饿,糖供应不足时,脂肪酸被大量动用,生成乙酰CoA氧化供能,但象脑组织不能利用脂肪酸,因其不能通过血脑屏障,而酮体溶于水,分子小,可通过血脑屏障,故此时肝中合成酮体增加,转运至脑为其供能.但在正常情况下,血中酮体含量很少. 严重糖尿病患者,葡萄糖得不到有效利用,脂肪酸转化生成大量酮体,超过肝外组织利用的能力,引起血中酮体升高,可致酮症酸中毒. 4?酮体生成的调节 ①1〃饱食或糖供应充足时:胰岛素分泌增加,脂肪动员减少,酮体生成减少;2〃糖代谢旺盛3-?磷酸甘油及ATP充足,脂肪酸脂化增多,氧化减少,酮体生成减少;3〃糖代谢过程中的乙酰CoA和柠檬酸能别构激活乙酰CoA羧化酶,促进丙二酰CoA合成,而后者能抑制肉碱脂酰转移酶 Ⅰ,阻止β-氧化的进行,酮体生成减少. ②饥饿或糖供应不足或糖尿病患者,与上述正好相反,酮体生成增加.
  (六)脂肪酸的合成代谢
  1?脂肪酸主要从乙酰CoA合成,凡是代谢中产生乙酰CoA的物质,都是合成脂肪酸的原料,机体多种组织均可合成脂肪酸,肝是主要场所,脂肪酸合成酶系存在于线粒体外胞液中.但乙酰CoA不易透过线粒体膜,所以需要穿梭系统将乙酰CoA转运至胞液中,主要通过柠檬酸-丙酮酸循环来完成. 脂酸的合成还需ATP、NADPH等,所需氢全部NADPH提供,NADPH主要来自磷酸戊糖通路. 2?软脂酸的合成过程(见原书) 乙酰CoA羧化酶是脂酸合成的限速酶,存在于胞液中,辅基为生物素.柠檬酸、异柠檬酸是其变构激活剂,故在饱食后,糖代谢旺盛,代谢过程中的柠檬酸可别构激活此酶促进脂肪酸的合成,而软脂酰CoA是其变构抑制剂,降低脂肪酸合成.此酶也有共价修饰调节,胰高血糖素通过共价修饰抑制其活性. ②从乙酰CoA和丙二酰CoA合成长链脂肪酸,实际上是一个重复加长过程,每次延长2个碳原子,由脂肪酸合成多酶体系催化.哺乳动物中,具有活性的酶是一二聚体,此二聚体解聚则活性丧失.每一亚基皆有ACP及辅基构成,合成过程中,脂酰基即连在辅基上.丁酰是脂酸合成酶催化第一轮产物,通过第一轮乙酰CoA和丙二酰CoA之间缩合、还原、脱水、还原等步骤,C原子增加2个,此后再以丙二酰CoA为碳源继续前述反应,每次增加2个C原子,经过7次循环之后,即可生成16个碳原子的软脂酸. 3?酸碳链的加长. 碳链延长在肝细胞的内质网或线粒体中进行,在软脂酸的基础上,生成更长碳链的脂肪酸. 4?脂肪酸合成的调节(过程见原书) 胰岛素诱导乙酰CoA羧化酶、脂肪酸合成酶的合成,促进脂肪酸合成,还能促使脂肪酸进入脂肪组织,加速合成脂肪.而胰高血糖素、肾上腺素、生长素抑制脂肪酸合成.
  (七)多不饱和脂肪酸的重要衍生物
  前列腺素、血栓素、白三烯均由多不饱和脂肪酸衍生而来,在调节细胞代谢上具有重要作用,与炎症、免疫、过敏及心血管疾病等重要病理过程有关.在激素或其他因素刺激下,膜脂由磷脂酶A2催化水解,释放花生四烯酸,花生四烯酸在脂过氧化酶作用下生成丙三烯,在环过氧化酶作用下生成前列腺素、血栓素.