紫外吸收峰300nm时,可能是哪种物质

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:27:35
紫外吸收峰300nm时,可能是哪种物质
xZnI~8$8kEjD}ٽIHl;d~4{]U?ty]^ Q+iMON~n^YS7VS; ^Y{򏟿'ys^o+RR͸|7EqO]?-_;㬥s~vžV?}$wbN7W$%:ͫݮwٖh}2vdDq}#yFT2$|FjN]t Ó6߷jbY.{r-aIV-N䡍,ԊM$s{5!͐ݐN.[{*cuz˿MܗAZs3_9k$Ea]jkmQ̃ v9|qnށ_wqo3ߨ 'gmC/n6`M #&S`mcDqYxv7&vyE$ m SaZz- 5 ykRxqJ.oЋwԁa~ypw eO}}-} oEsg]H:?u5xUk2xZٜ9T.1QhIUH@,XK1I{cun^F?ܽj\:pI{ vnk30 yL.Ɲ޾3A`+,X^7Q?.V"hfkYh[dlw n4[0$L}Z)v)kZ>G['fN3a֪ӭ[,TJQKD8MoŐ})(!an$kqg@Wp -~#Zk@RbB[n^~T4?sK|e]ofw '#~2,HK)htxWu;Hk̏_B@CPVA<|QO~Ͽ?CXrв5Qa|TGTSH%Y;0 )I5hÀE5zPC$M.UZcG$ID@_QM%@5G``5Tw uIݿ>]O)L? e/&D_iR$TهHhyH\qي28Di1c"LX tV[W9woR4ljj fdfV@xIsP]5~):vVZ㛥c\cm@X{ayB;o+MPe 5D{R${f29! I\7i1x{ݎxCfp(]iꮟ*BEH!I;pXeEGY- 4_B)@|6RgA2pQD,{\U5Vq;kMjZxu2Ѐ`Sq]H)>rBCz"/f%7SGfA)OfGt42M#W L@ 1zn%nx& { 9/Nm@-Fn m-iGkH<6!E:u:oA[G"AIߍYDH= &W.=i`2IDPBſ* &Xdθߓ!{r)U'm|J8;CW=zSyJ0r例ʪ?v7&8h7!D!LX\Pi* CopN#/_)Υ˫`h@*I}Rݨ#~GT4n`f"8򼏷^hd_Q=7ji@gL)32nFbV y $G3: B "L şgSgJ=Y5?~>ʭ͑)[M-α3z(~8iQDel m~>%*h<,v.vKA#fy ݡx@JQpa;-nè!UUrݭ *tF.X:{9%RG4v,k`(Ak2ԁ9l򘭰0+n+#H3W[Г^O6!K ~5öwR)QT`UcTڒ;֒>UWPvD^MAW )>)RL F-~J ۋoD*ά¯N/حD-x`G =Dݚ30<A-%+/u8b)8d&"9h+?S㰒'cob^Iw`q%ќ\ByC VKBjD;&Hkv> QyP+'d>uGZb:ϧR-,) #j 4X[?TMՅN:2Dr؋?Q"/2xdR06)~3. 6v^$ | _4,7Hv]yUFZ{rb<JAklJd)s?$z|*"|$EqHF(3!_N"t,PiLH A&Lܦ"F-;eY'Igt8U6m(ŖQd^$Rt^l.D&쳭w=|i}^/ͩzFk>^3:MSoJ*Qj颪&)撄g՚^c 'ل"H$b*=IaS+R`Aq,)E˿/ߗ^ǀ=}e ϐ|˛^?}_R

紫外吸收峰300nm时,可能是哪种物质
紫外吸收峰300nm时,可能是哪种物质

紫外吸收峰300nm时,可能是哪种物质
可能是辛四烯.
请参考如下资料:
紫外吸收光谱法基本原理
一、电子跃迁
最常碰到的电子跃迁类型

二、发色团、助色团和吸收带
1、发色团
指具有跃迁的不饱和基团,这类基团与不含非键电子的饱和基团成键后,使化合物的最大吸收位于200nm或200nm以上,摩尔吸光系数较大(一般不低于5000),简单的生色团由双键或三键体系组成.现简要讨论含生色团的不同类型有机化合物的电子吸收光谱.

(1)乙烯及其衍生物
简单无环烯烃,如乙烯的跃迁的最大吸收在180nm附近,有烷基取代基时,由于碳原子的sp2杂化,最大吸收略有红移,这种现象的实质是诱导效应或超共轭效应引起的.
共轭生色团
含一个以上生色团的分子的吸收带可能是彼此隔开的生色团吸收的叠加,或可能是生色团的相互作用的结果.即使两个生色团为一个单键所隔开.也会发生共轭作用,于是电子吸收光谱与孤立的生色团的吸收带相比,呈现出明显的变化.
最简单的一个例子是1,3一丁二烯CH2=CH—CH=CH2,该分子中,两个C=C键为一个单键隔开,由于共轭作用,该分子给出的吸收光谱向低能量方向移动.在共轭体系中,电子离域于至少四个原子之间;这导致了跃迁能量的下降,同时由于跃迁几率增加而使摩尔吸光系数也有所增加.共轭作用对跃迁的影响相当大.对乙烯(193nm)1,3—丁二烯(217nm),已三烯(258nm),辛四烯(300nm)系列来说,可以看到:随该系列每个化合物中C=C双键的逐渐增加,产生红移并伴有摩尔吸光系数的增加.
(2)多炔和烯炔烃
简单三键的跃迁在175nm处有最大吸收,摩尔吸光系数约为6000.
共轭炔的电子吸收带也向低能量方向移动,但是,其摩尔吸光系数则要比共轭烯的低得多.例如,乙烯乙炔CH2=CH—C=CH所呈现的吸收带在1,3一丁二烯附近(=219nm)但其摩尔吸光系数仅为6500,而1,3一丁二烯的是21000.当共轭体系扩展到3至6个三键时,则产生高强度吸收带,摩尔吸光系数达105数量级.含双键的炔烃共轭体系,其紫外吸收光谱与多炔烃相似,在碳链长度相同的情况下,烯炔烃的吸收强度比多炔烃大,且最大吸收波长进一步红移.
(3)羰基化合物
羰基化合物与二烯类、非极性不饱和化合物不同,前者的吸收带强烈地受到溶剂性质的影响,且随α取代基的增加,跃迁的吸收带逐渐红移;后者一般不受α取代基的影响.在饱和有机化合物分子中含有酸、酯、内酯和内酰胺等结构单元,羰基的吸收一般在200—205nm.但是,当分子中的双键与羰基共轭时,其吸收带显著增强.
(4)芳烃和杂环化合物
饱和五元和六元杂环化合物在200nm以上的紫外可见区没有吸收,只有不饱和的杂环化合物即芳香杂环化合物在近紫外区有吸收.这种吸收由 跃迁和跃迁产生的.
(5)偶氮化合物
含—N=N—键的直链化合物产生的低强度的吸收带位于近紫外区和可见区.长波处的吸收带被认为是由跃迁所致.对脂肪族的叠氮化合物来说,285nm处低能量吸收带被认为是电子跃迁所致,而215nm处的吸收带则被认为是s-p→跃迁所致.
2、助色团
指带有孤对电子的基团,如—OH —OR、—NH2、—NHR、—Cl、—Br—I等,它们本身不会使化合物分子产生颜色或者不能吸收大于200nm的光,但当它们与发色团相连时,能使发色团的吸收带波长(λmax)向长波方向移动,同时使吸收强度增加.

(1)吸电子助色团
吸电子助色团是一类极性基团,如硝基中氧的电负性比氮大,故氮氧键是强极性键,当—NO2引入苯环分子中,产生诱导效应和共轭效应,是苯环电子密度向硝基方向移动,且环上各碳原子电子密度分布不均,分子产生极性.
(2)给电子助色团
给电子助色团是指带有未成键p电子的杂原子的基团,当它引入苯环中,产生p-π共轭作用,如氨基中的氮原子含有未成键的电子,它具有推电子性质,使电子移向苯环,同样使苯环分子中各碳原子电子密度分布不均,分子产生偶极.
无论是吸电子基或给电子基,当它与共轭体系相连,都导致大π键电子云流动性增大,分子中的跃迁的能级差减少,最大吸收向长波方向移动,颜色加深.同时也指出助色团对苯衍生物的助色作用,不仅与基团本身的性质有关,而且与基团的数量及取代位置有关.
3、红移、蓝移、增色效应和减色效应
在有机化合物中,因取代基的引入或溶剂的改变而使最大吸收波长发生移动.向长波方向移动称为红移,向短波方向移动称为蓝移.
由于化合物分子结构中引入取代基或受溶剂改变的影响,使吸收带强度即摩尔吸光系数增大或减小的现象称为增色效应或减色效应.
三、吸收带
1、R吸收带
由化合物的跃迁产生的吸收带.具有杂原子和双键的共轭基团,如C=O、-NO、-NO2、-N=N-、-C=S 等.其特点是:跃迁的能量最小,处于长波方向,一般λmax在270nm以上,但跃迁几率小,吸收强度弱,一般摩尔吸光系数小于100.
2、K吸收带
是由共轭体系中的跃迁产生的吸收带.其特点是:吸收峰的波长比R带短,一般λmax >200nm,但跃迁几率大,吸收峰强度大.一般摩尔吸光系数大于104,随着共轭体系的增大,π电子云束缚更小,引起跃迁需要的能量更小,K带吸收向长波方向移动.
K吸收带是共轭分子的特征吸收带.借此可判断化合物中的共轭结构.这是紫外光谱中应用最多的吸收带.
3、B吸收带
由苯环本身振动及闭合环状共轭双键跃迁而产生的吸收带,是芳香族的主要特征吸收带.其特点是:在230-270nm呈现一宽峰,且具有精细结构,常用于识别芳香族化合物.
4、E吸收带
也是芳香族化合物的特征吸收带,可以认为是苯环内三个乙烯基共轭发生的跃迁而产生的.E带可分为E1和E2吸收带,都属于强吸收.
红外吸收光谱图与其紫外吸收曲线比较,红外吸收光谱曲线具有如下特点:第一,峰出现的频率范围低,横坐标一般用微米(μm)或波数(cm-1)表示,第二,吸收峰数目多,图形复杂;第三,吸收强度低.吸收峰出现的频率位置是由振动能级差决定,吸收峰的个数与分子振动自由度的数目有关,而吸收峰的强度则主要取决于振动过程中偶极矩的变化以及能级的跃迁概率.
一、双原子分子的振动
(一)谐振子振动
将双原子看成质量为m1与m2的两个小球,把连接它们的化学键看作质量可以忽略的弹簧,那么原子在平衡位置附近的伸缩振动,可以近似看成一个简谐振动.
在通常情况下,分子大都处于基态振动,一般极性分子吸收红外光主要属于基态(ν =0)到第一激发态(ν=1)之间的跃迁,即△ν=1.
非极性的同核双原子分子在振动过程中,偶极矩不发生变化,△v=0,△E振=0,故无振动吸收,为非红外活性.
根据红外光谱的测量数据,可以测量各种类型的化学键力常数k.一般来说,单键键力常数的平均值约为5 N•cm-1,而双键和三键的键力常数分别大约是此值的二倍和三倍.相反,利用这些实验得到的键力常数的平均值和方程(10-5)或(10-6),可以估算各种键型的基频吸收峰的波数.例如:H-Cl的k为5.1 N•cm-1.根据(10-6)式计算其基频吸收峰频率应为2 993 cm-1,而红外光谱实测值为2885.9 cm-1.
化学键的力常数k越大,原子折合质量μ越小,则化学键的振动频率越高,吸收峰将出现在高波数区;相反,则出现在低波数区.例如,≡C—C≡,═C═C═,—C≡C—,这三种碳—碳键的原子质量相同,但键力常数的大小顺序是:叁键>双键>单键,所以在红外光谱中,吸收峰出现的位置不同:C≡C约(2 222 cm-1)> C═C(约1 667 cm-1)>C—C(约1 429 cm-1).又如,C—C,C—N,C—O键力常数相近,原子折合质量不同,其大小顺序为C—C

紫外吸收峰300nm时,可能是哪种物质 215NM紫外吸收峰在215nm 有紫外吸收峰的物质有什么呀? 我要检测物质在230nm处的紫外吸收峰,可以用乙醇做为溶剂么?谢谢乙醇的紫外吸收峰为200nm左右 蛋白质紫外吸收峰波长为()核酸紫外吸收峰波长为()nm 氨基酸紫外吸收含义色氨酸、酪氨酸最大吸收峰在280nm ,其含义到底是什么 Phe、Tyr、Try(p)对紫外吸收峰在多少nm?蛋白质的最大吸收波长为多少nm? 蛋白质在紫外有两个特征吸收峰,在测定蛋白质含量时为什么选择280nm而不是220nm呢? 在紫外360nm吸收有荧光的物质,化学反应时生成的有荧光物质的一般结构? 用紫外吸收光谱进行物质纯度检查时为什么烷烃没有吸收峰 怎么查一个物质的紫外吸收峰 紫外可见漫反射吸收谱,紫外区域出现两个吸收边,怎么回事?这是一种无机半导体材料,做了紫外可见漫反射吸收谱,材料在200-250nm吸收强烈在250nm以后迅速下降,出现吸收边到300下降平缓到350nm又 求救:核酸吸收峰在200nm左右是怎么回事?用紫外吸收法测核酸含量,样品的吸收峰不在260nm左右,而是在200nm左右,请问是什么原因? 【求助】丙酮在什么波长下有紫外吸收?280nm下有吸收吗? 【求助】丙酮在什么波长下有紫外吸收?280nm下有吸收吗? 某非水溶性化合物,在200nm~250nm有吸收,当测得其紫外可见光谱时,应选用的溶剂是: A正某非水溶性化合物,在200nm~250nm有吸收,当测得其紫外可见光谱时,应选用的溶剂是:A正己烷. B丙酮. C 做紫外光谱时吸收峰一般在什么范围 紫外灯365nm 高中物理由于臭氧在紫外光波长由于臭氧在紫外光波长200-300nm的谱段有强吸收带,在300-340nm的谱段有弱的的吸收带,在440-740nm可见光区有吸收带,所以臭氧层可以大量吸收紫外线和可见光.(1)紫外