行星怎么会绕太阳转牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的怎么开始的?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:47:04
行星怎么会绕太阳转牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的怎么开始的?
x\n#Yv`LeV‹nll0P)q8HEʔDRJ N@OlrUs}"Hڽ1BB%2"p߽;~&i.q0.,ԦI1o;E9ׂzPYsNzYL_cl;X3icTZ&6y86F>|sˑk9^,?w o2:w>g^MW>b”ܠ \d oֿN.^b6r'm6wJgqc^)V=Gct)}^S;=W7^iHdM8~ K1U}d.^~NcV)E[ Wv׸?N/UA=o+~|\SHVdpZ>OA[P(qDIn9}?S8LQz)8OL{QaX3 ݀9,tf'}|6+O?GwnT>;WQ Ga5;i[.DKiI3Z]J-;9)gnr'ӃhӪ\O/Uƽ6~&1 ǣn`O4GpyAwM4Y2/ۂ)vU&,12R8h2RX5 'P>\4Ť|CIe!`~rф=Fes{Ԏ1MM0|GMo Fhk(, x&d'c`1d w6a{֊+ +o9]d^-^v2q?T-Si-/L `_dKNyFz@!iVdz!_m5TX,TC`b^\0+X_p4[X2P|R5 .ZAċۓynbo)bd6hFt۾R@i-ӵҦjO5z5= /։PCpn/M{T)K.5}z*it1 =>c{MVIǩ_ >xqQj@`D}}?P8ѼҊ3j gJK, >*`Ӄ<󋧛 J@ ;t7sy~1f'N+q:qR V"6+99aq-CB5zՓp2(\dj5BT6_F\h->b(C f,/{aO(au "r0` ^sABzz;^ApBƕ3^lϡ^S^iXΦOI::;JEU6iP>T"O)-v=JPX)U7gֽ8jft )$\py$uؑ;BWҰs %()g'|xzoɚPUFAt:֣Ë(%@Dׄ[F[bas6,zriWFd%R .ya"PQs y2<%%|dc 8ffu !:XZ5mETRɰjk>j|5! (9HTerY<;I ;IKarXnVKԆ_Bk1H ?6aszD)76 *cIoI)1 =4{fbAj?M8Yn'3\Rȯ0XM`B@¼ _F Af4i2pv%:~Jo6vS?D `'J^Q}7&qArR\M>",AC|2Cy Vtt^Kg-Iz K}$mJg 2bK^p0"\܆anƻPbߛ^L^sR 4~Mi3(`0 %ЖVI=zvؼM:Wt)u+n&M%i"$ ^ 4is=vŴ"5IՔ "3Sd 8{C mn/.>Ȕ22- cUS&TJ&Gp1 IWƄuЂ=m;muRe\>=j ϱ1( ^xwGzww. *¤/i~ ֑l6v߭Բ.cdݞLzN~YB>B>#kUHXԈu*BX R_ㅿ1*@Yp Jq2:H΀SKbZn?efY8,nM,zkdqخD^3EcHVClWIl9)4$SHY&-V`V+[TW8IN6I~ {)DDBGA:yU3Eq:*;ԧN|%q|oj(V.q.;o Dx5h73SVD Mwk ř-$5Uޤ;ّ8mPqo2] i2jکZM=y8tǕQ%ΊlJc߲Fz[`I p}<|`mr=V UR eo!عn4ӿ6)<61ҥ]AK'm}r,T mGb@~%a'eCLȻլɓNrr4aI*&ȼ3g'ۑq Hg,(i8E\q.``茝L#XajZb/z4l&*Y}%Y(m(\o3\5w,#ry0KZ3nuj^-lhW.?uey Ε9%9TnջS&f 4J +4%p H2F"Z^;KXk擕=I̱ȨQ7of-hxFxt)}eDARpFv6Q qoONzI|+m~r|>AÔϦ@"O7&\JIp//Erk&ǤPhm&MH$R̴%ˌ.6 e6*N[ocBm?K(dE(M$3. ÊwU$v"NP|Vj1/%yT=!$,PEeYLU")v&@rBGf:&@V%Dn+d(%\]Gnu]SULxcaKb15m;s,P3mdSˮL:^:/q̍K?ѼFD7Y5IC2 7G0wAW6j/3|%st.I"Q$7LΒLHs0BBںdBC"eх*Ƹo IvlPAeyy|۾Y}z">,k|J^-vvǗT:Ƽaϝ057d#\`yUT_=1OEڪǽ"9$:N@NBDg*J\(+I? MKIa6}T&fB(*ͪ]b]C}ʙN Tz>t=]6:92R|8eG9f}5]jayޟ={+.euZJMGD~AA9ʞ+[k\^?>yJnR+#T,/XӘAbkSEcWX* [ėҳ74[+v^U|ցfވJŭ419*IkN LEbP Wɧ蛅V+o$ZBnE&e̓ʁ툭\Od9}.]3_u")3 HW"giUL&@AJO97+XJ/=\΋Czj-y3(س(zSG/פq&,/˩d!R4-O%R>yaE/eC+ڡ/nx?)?GL4=1ǴDbm?{0\?`;9݂~(BGu([WOl2cQ0VNkxMII)}.J&i1HKBQ1R=-]ŗ>+z>Wԥ8: r;2WR:x)}OGndDFLj"N!ޮ]B|C:NFIӢ~OmHe6{0xem̳{6%/m\H%`{C'6 )" ϛ8h&G]Cѹ[wTI0Ti츲*!Ts-jifdMH{]i%o#o;یH~2@&bV0Y-~EzjjuC\\AlNb<ȗn&TSVV]H--'=Jo}!¯3wV_Kѥj =wXKߪse1)uQLnfT&lJ>")ҥvK.5wLuD 7՞mCpܥp: /px>fOl)cX%[`,8mqG홑ueQ( lOB$?||Maـݖ94p0g-Ei~Uq&S7fUu6įph4_/g#T"Yʯ}\ɜʭo84p/z{#4; 3v$

行星怎么会绕太阳转牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的怎么开始的?
行星怎么会绕太阳转
牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的
怎么开始的?

行星怎么会绕太阳转牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的怎么开始的?
看看这个你就知道了.
太阳系的形成过程
太阳系的形成和太阳自身演化密不可分,太阳的形成要经历三个时期五个过程,即星云时期、变星时期和主序星时期,五个过程是冷凝收缩过程、快引力收缩过程、慢引力收缩过程、耀变过程和氢燃烧过程,而行星的形成仅仅是太阳演化过程中的副产品,也就是太阳演化到某个阶段才形成了行星和卫星等天体.这是个非常复杂的演化过程,既有规律性,又有特殊性,还有偶然性,本文只略述太阳系的形成过程,不作理论推导和复杂的数学计算,只给出计算的结果.
星云时期(包括冷凝收缩过程和快引力收缩过程)太阳系是银河系的一部分,距银心2.5万光年,在猎户旋臂附近,太阳带领她的大家族以250公里/秒的速度绕银河中心旋转,周期约2亿年,50亿年之前若干亿年太阳系原始星云就在这个位置上.她是巨大的银河系原始气体云团(即星际云)冷缩断裂后分离出来的一小块星云,有初始速度和一定温度(不是高温),星云直径约3000天文单位,其实星云没有明显的边界,是个弥漫的氢气团,密度很低,约10.17克/厘米3,星云质量是太阳质量的1.5——2倍,温度在300K以下,有自转,但很慢,几乎和公转同步,星云主要成分是氢,占71%,其次是氦占27%,其它各种元素占2%,这里面包括从超新星爆发飞来的重元素和金属物质,还有挥发性物质和尘埃等.太阳系原始星云绕银河系中心运转,一开始就有角动量,在冷凝收缩过程中自转加快,就使自转不再与公转同步,又由于星云内侧和外侧到银心距离不等,在绕银心做开普勒运动时形成速度梯度,里快外慢,出现较差转动,星云在银心的潮汐力作用下发生湍动,并形成大大小小的涡流,各个涡流之间相互碰撞和兼并,又形成大的涡旋,最后形成一个更大的中心旋涡,由于星云继续缓慢的冷凝收缩,旋涡自转速度逐渐加快,大量物质开始向旋涡中心汇聚,致使中心区物质密度增大,引力增强,形成中心引力区,于是物质又在引力作用下加快向中心旋落,星云的冷凝收缩逐渐被引力收缩所代替,这时星云已由原来的3000天文单位缩至70天文单位,大约经过几十亿年的时间,其间星云体温度下降到几十K,物质损失较大,部分物质散逸到宇宙空间.
随着星云中心引力区的增强,加快了物质向中心旋落,形成了星云坍缩,进入快引力收缩过程.在星云内部物质从四面八方沿着涡旋方向迅速向中心下落,形成粗细不同的螺旋线式的物质流,星云也逐渐拉向扁平,形成阔边帽式的园盘,螺线状的物质流逐渐演变成四条旋臂,只要角动量不足就不会形成圆环,只能形成旋臂.从正面看犹如缩小的银河系,成旋涡结构,从侧面看类似NGC4594天体(M104),在平行总角动量轴的方向上收缩不受限制,坍缩迅速,增加的引力势能转变为物质的内能,而在赤道平面上收缩受到限制,这是因为受到离心加速度的作用削弱了引力,使收缩缓慢,才形成中央凸起四周扁平的带有旋臂的园盘,从总体看星云仍在继续收缩,角动量仍然向旋臂和中心区转移,当内旋臂收缩到距中心5.2天文单位时,转速逐渐达到13.1公里/秒,自转产生的离心力和中心区的引力相平衡,旋臂就停留在这一位置而不再收缩,但中心区的物质继续快速收缩,中心区与旋臂发生断裂,中心区继续收缩形成原太阳,占星云总质量的99.8%,而四条旋臂的质量还不到0.2%,此时原太阳对旋臂仍有很强的引力作用,同样旋臂也对原太阳有牵制作用,原太阳的自转受到滞后作用,转速渐渐减慢下来,把原太阳的角动量又转移到旋臂上,这时旋臂上物质只要角动量不足还会继续向中心旋落,但到达内旋臂处就不能再落下去了,因此内旋臂物质积累越来越多,而外旋臂物质相对减少了.当四条旋臂逐个达到开普勒轨道速度就演变成四道园环,园环位置按提丢斯—彼得定则分布,分别在木、土、天、海轨道位置上,它们的角动量占星云总角动量的99.5%,这就是太阳系角动量分布奇特的原因.以此种方式形成的拉普拉斯环不存在所需角动量不足的困难. 中心区坍缩成原太阳,物质密度增大,分子间相互碰撞频繁,产生的内部压强逐渐增大,使核心处物质挤压在一起形成星核,并释放大量能量,中心温度升高,增加的热能通过对流方式向外传播,星体呈现微微放热状态,整个星云体类似猎户座KL红外源区一样的天体.星云时期的快引力收缩过程历时很短,大约几千年,我们常说太阳有50亿年的历史,大概就从这时算起吧.
变星时期(包括慢引力收缩过程和耀变过程):星云形成四道园环后,绝大部分质量都集中在中心区百分之一天文单位范围内,物质密度大增,分子间相互碰撞更加频繁,温度升高,压强增大.当内部辐射压和自吸引力接近相等时出现准流体平衡,星体不再收缩或者仅有微小脉动收缩,太阳的雏型基本形成,中心是快速旋转的坚实星核,核外是辐射区,再往外到表面是对流层,原太阳逐渐转入慢引力收缩过程.
原太阳内部物质运动非常复杂,因物质是气态流体,与刚体大不一样,在自转中出现了许多复杂的运动状态,因惯性离心力的作用赤道物质有拉向扁平的趋势,两极处物质必向赤道方向流动,极处物质减少了,但引力的作用是维持球形水准面,所以也必有物质向两极处流去,以补充那里的物质不足,于是在赤道两侧形成旋转方向不同的涡流,并随物质流动渐渐靠近赤道,这就是有名的蝴蝶图,这种状态直保持到现在,如太阳黑子运动.随物质对流和自转相互作用,角动量向赤道转移,从而形成星体的较差自转.核心处高密高压和高温不断增加,扰乱了热平衡梯度,通过混合长把动能和热量向外传输,温度较低的物质向下沉,形成对流,并发展为从内到外的湍流.当中心温度上升到2000K时,氢不能保持分子状态,而变成原子,并吸收大量热能,促使压力骤降,抵不住引力,中心区崩陷为体积更小密度更大的内核,并产生强烈的射电辐射,这些能量辐射可从星体稀薄处穿过而到达星体表面,因而可形成一些亮条,这就是H——H式天体.
星体内部不仅有高速运动分子产生的热能,还有原子级释放的电磁能,核心温度更高,星体自转虽然减慢下来,但星核还是快速自旋,核区附近的等离子体也随之快速旋转,星体磁场产生了,磁力线从两极附近穿出,星体这时产生了射电辐射,而内部热能不断传送到表面,表面温度可达1000K,并放射红光,这种能量传递时起时伏,表面温度也就忽高忽低,表现的星等就是忽大忽小的变化.有时能量积累到一定程度还会发生猛烈地喷发,抛出物质,在几天之内星等可上升5、6个等级,这个时期相当于金牛T型变星期或者类似鲸鱼座UV型耀星期,即为耀变过程.
原太阳中心区的温度逐渐升高,当达到80万K时,氢被点燃发生核聚变,首先是氢和氘聚变为一个氦核,产生光子并释放大量核能,突然猛增千百倍能量,必将产生猛烈地喷发,星体亮度也就突然增亮好多倍,这就是耀星或新星爆发,原太阳进入耀变过程,在这期间内发生过多次猛烈地喷发,释放大量能量和抛射物质,并带走一部分角动量,比较大的喷发有四次.因太阳质量不算太大,就没有更大的全面爆发,仅仅是局部喷发而已.
喷发是从星体内部核反应区开始的,那里的星核自转非常快,可达每秒数百公里.物质具有极高的能量,因此喷出物高温高速,第一次喷出物的质量约是太阳质量的百万分之三,温度一万多度,喷出速度高达每秒616.5公里,呈熔融半流体状态,高速自旋,在飞离原太阳过程中边降温边减速,当它到达目前金星轨道处速度刚好与开普勒轨道速度同步,便留在轨道上绕原太阳运转.仅过几十年,原太阳又发生第二次喷发,喷出物比前次略多些,仍是高温熔融状态,高速自旋,初速度比前次略大,当它进入到现今的地球轨道处便绕原太阳运行.又过数百年,原太阳又发生第三次喷发,这时的星核温度进一步增高,达300万度,发生氘、锂、铍、硼等核反应,释放能量更大,喷出物质没有前两次多,但初速度却大些,其中最大的一个团块进入到现今的火星轨道上,更多的碎块遍布在木星和火星轨道之间,经过三次喷发,原太阳处于暂时休顿状态,持续几千年,但星体中心温度仍在继续升高,当达到700万度时发生四氢聚变氦的质子——质子反应,释放大量光子和能量,原太阳发生第四次猛烈喷发,这次喷发物是太阳质量的千万分之二,初速度比前三次都大,因此飞出更远,其中一块较大的喷出物撞击在天王星边缘,溅起的物质碎块抵达海王星轨道处,更多的碎块遍布太阳系空间,有的飞出海王星的外侧.这时原太阳表面温度上升到数千度,放热发光.一个光芒四射的恒星即将诞生.原太阳在变星时期大约有4亿年.
主序星时期(包括氢燃烧过程和未发生的氦燃烧过程):原太阳经过几次耀变逐渐趋于稳定状态,进入氢燃烧过程,释放核能,星核中心核反应区温度可达1500万度,核反应出现碳氮循环反应,但大量的还是质子——质子反应,核中心密度达160克/厘米3,中心压力3.4×1016帕,抵住星体的引力收缩,达到新的热平衡梯度,不再发生喷发现象,进入相对稳定期.这时星体表面温度达5770K,成为G型星,太阳辐射主要是电磁辐射和带电粒子流,外层大气不断发射的稳定粒子流——即太阳风,驱散星周物质,使太阳更加明朗了,成为一颗年轻的主序星.太阳在主序星期已有46亿年了.太阳活动仍在继续中,表现为11年一个周期,说明太阳还在继续演化中.当太阳中心温度达到1亿度,氦核聚变为碳核和氧核反应,进入氦燃烧过程.
类木行星和规则卫星的形成:原始星云在快引力收缩过程形成的四道园环,恰在海、天、土、木四颗类木行星的轨道上,环内物质受中心天体的引力作用有向内运动的趋势,还受惯性离心力作用有向外运动的趋势,同时还有开普勒较差转动的影响,必造成环物质形成大大小小的涡流,并相互碰撞和兼并,由小涡流变成大漩涡,最后形成一个带有若干条旋臂(至少有四条大旋臂)的大旋涡和孤立的小漩涡,物质向漩涡中心汇聚,形成中心引力区,加快了引力收缩,自转速度更快了,惯性离心力也就更大了,当离心力和中心体引力平衡时,星体就不再收缩,旋臂的旋转速度达到开普勒轨道速度时就演变成卫星园环,形成阔边帽式的天体,又经过引力吸积,清除行星轨道环上的物质,逐渐演变成原行星. 原始星云密度是梯度分布,越往里密度越大,外部密度小,还因部分物质向内转移,所以外侧两道环形成的两颗行星质量就小,这就是海王星和天王星,内侧两道环形成的两颗行星质量就大,这就是土星和木星,各行星内部都有坚实的星核,温度高达数千度,最高可达3万度,中心压力为1012帕以上,但还不够点燃氢的条件,没有发生核聚变反应,产能机制仍然是引力势能转变而来的热能和释放原子级的电磁能,星核的高速旋转形成磁场,内部热能通过对流传送到星体表面,因此类木行星都有放热现象和强度不同的射电辐射.木星的大红斑便是内部热能向外传输过程中形成的涡流,类木行星表面温度都很低,呈液态状,因星体是在收缩过程中形成的,为保持角动量守恒,自转就快一些.
中心体形成行星之后,周围的卫星园环在远离洛希极限处只要达到洛希密度都可以形成卫星,孤立的小漩涡也能形成小卫星,这样的卫星都是规则卫星,但在洛希极限附近及内侧受本星体的潮汐作用,不会形成卫星,只能以环的形式存在,因此四颗类木行星最初都有一个庞大壮观的光环.
类地行星、月球和冥王星等的形成:原太阳在耀变过程有四次猛烈地喷发,高温熔融半流体状的喷出物在进入金星、地球和火星轨道处绕原太阳旋转,成为原行星.在金星轨道的原行星质量约为5.2×1027克,半径6165公里,自转周期2.72小时,自转线速度为3.95公里/秒,由于原星体是从高温熔融状态凝固而成,所以星体成粘稠状,粘滞系数很大,这时星体内部还没有发生分异作用,在高速自旋中受惯性离心力的作用将星体拉成长球形,同时在原太阳引力的长期摄动下,长球形又逐渐变成一端大一端小的纺锤形,随时间推移,纺锤形被拉开形成两颗姊妹星,一大一小,互相绕着转.根据角动量守恒原理,二星距离逐渐增大,绕转速度就变慢,当二星相距60万公里时,它们绕质心的自转几乎和绕太阳的公转同步.当二星距离接近61.6万公里时,小星绕到大星的内侧(即靠近原太阳这边),太阳对小星的引力等于两颗姐妹星之间的引力,小星就不再转到大星的外侧了,而是二星共同绕原太阳公转,这时二星自转周期与公转周期相等.但开普勒轨道是离太阳近速度大,离太阳远速度小,在内侧的小星轨道速度比大星轨道速度大,小星逐渐运行到大星的前面,同时在引力磨擦作用下将大星拉转成逆向自转,而自身也拉成顺向自转,但自转很慢,随时间推移,小星渐渐离开原有轨道而进入一条新的绕太阳轨道,又经过若干周期形成了今天的水星轨道,原有的姊妹星变成了金星和水星.因此水星的偏心率和倾角都大,自转周期略小于公转周期,而留在原轨道上的大星就是金星,它被拉成逆向自转,同时拉斜一点,倾角略微偏大一些.
进入到地球轨道的第二次喷出物质量是6.05×1027克,半径为6444公里,自转周期5小时,自转线速度2.2公里/秒,和上次同样,从高温熔融状态凝固而成,星体内刚好要发生分异作用,受快速自转的离心力作用和太阳的摄动,也是分离成一大一小的姊妹星,互绕质心共同转动,由于太阳长期摄动,二星距离渐渐拉大,自转也就逐渐变慢,直到今天地球和月球的位置,地球自转周期为24小时,月球自转和绕地球公转同步,总是一面朝向地球.地月分离证据可在月球上找到,在月球朝向地球一面有个300米高的突起部分便是地月分离处的证据,地球上的分离处不易看到,其位置可能在非洲,而不象有的人所说月球是从太平洋分离出去的,如今月球仍以每年3厘米的速度远离地球,可以推想再过若干万年月球也会从地球身边跑掉,而进入太阳系内成为一颗新行星.
原太阳的第三次喷出物有一大块进入火星轨道后形成了火星和火星卫星,但是火星的卫星后来遭受一次小行星的猛烈碰撞,将它撞裂,并使轨道向火星方向内移,形成了今天的火卫一,另一碎块成为火卫二.
喷出物还有大量碎块进入火星和木星轨道之间,逐渐冷凝形成小行星.
还有一些碎块被类木行星俘获形成不规则卫星,当然也有碎块和尘埃进入光环和降落在其它天体上.
原太阳第四次喷发比前三次猛烈得多,喷出物数量与第三次的差不多,初速度较大,喷出的物质遍布整个太阳系空间,其中有一大团块快速自旋,质量约是冥王星的30倍,以617.49公里/秒的速度从原太阳喷发而出,进入到天王星轨道时正从天王星自转轴上方斜冲下来,撞击在天王星边缘上,把它的角动量传递给天王星,并随天王星一起转动98°角,使天王星躺在轨道上自转,同时在撞击处溅起两大块物质和若干碎块,在从天王星区飞出时形成一列,速度逐渐减慢下来,在进入海王星轨道时,前面一个质量为1.3×1025克,速度为4.7公里/秒,紧跟在后面的一块质量为1.77×1024克,还有一些碎块,最后面的一个质量为2.2×1025克,速度为4.4公里/秒,它们正好从海王星内侧(靠近太阳的一边)相距36万公里处飞过,而这个位置恰是海王星卫星的开普勒轨道,所以它们又被海王星俘获为卫星,并从海王星前面绕过来,成为逆行轨道卫星,而前面的一个因为速度略大,形成的轨道偏心率就大,它的远星点必在朝向太阳的方向,也许经过几个周期(或者仅一个周期),当它到达海王星的远星点时恰受太阳引力作用又绕太阳运转,成为太阳的一颗新行星,这就是冥王星,同时把它后面紧随而来的那个小块一同带走,成为绕冥王星的一颗卫星卡戎,所以冥王星轨道才有17°倾角和0.25的偏心率,其轨道又与海王星轨道有交会处.当然那个质量为2.2×1025克的大块就绕海王星逆行,成为海卫一了.海卫一上面少有陨坑,说明它是较后期形成的,缺少陨星撞击.
第四次喷发出来的碎块物质遍布整个太阳系空间,有的被大行星俘获成为卫星,有的降落在各天体上变成陨星,还有的进入到四颗类木行星的光环里和小行星带里,还有一部分飞到海王星外侧,形成柯伊伯带.当然不排除后来有少量的彗星物质也进入到柯伊伯带里,估计还会有一些碎块飞出太阳系.

气体云由于引力收缩,形成恒星和行星
由于收缩,势能转化为动能,产生向心的速度,后来不同小天体间碰撞,形成侧向的速度,
凡是不顺着大方向转的,或是速度过大或过小的,不是撞飞了,就是并入大天体了,剩下来的都是平衡的

爱因斯坦认为,太阳的引力造成太阳周围的空间下塌,因此周围的物质就不得不向这个引力的中心成螺旋状滚去,但因为太阳本身在旋转,和宇宙的膨胀使得物质一直无法坠向太阳

行星怎么会绕太阳转牛顿说是上帝的手推了地球一下,后来由于引力开始转,可到底是怎么转的怎么开始的? 牛顿很相信上帝 因为地球绕太阳转的 所依靠的力现在的科学都不知道 有的人说是超自然力 当时牛顿搞不清 就认为是上帝给的 其实我一开始就不相信上帝 但我一开始相信 绝对有一种思维 下面说法正确的是:A.行星绕太阳的椭圆轨道可近似地看作圆轨道,其向心力来源于太阳对行星的引力B.太阳对行星的引力大于行星对太阳的引力,所以行星绕太阳运转而不是太阳绕行星运转C.万 除牛顿之外谁还研究了太阳与行星间的引力并得出了怎样的结论 关于牛顿万有引力规律和开普勒定律的疑问(高中物理)两个疑问.1,由开普勒第一定律可得行星绕太阳的轨道不是椭圆吗,所以行星不可能绕太阳作匀速圆周运动.可是为什么说太阳对行星的 牛顿用了什么实验证明上帝的存在? 牛顿出现了不假,问题是晚年的牛顿信了上帝,科学和迷信是两个停争论的主体,为什么牛顿最后信了上帝? 开普勒行星运动定律从哪几个方面描述了行星绕太阳运动的规律? 行星的轨道根数决定了行星怎样绕太阳运转. 牛顿由下列哪些一句想到太阳和行星之间存在引力A 牛2(解释下)B 牛3(同前) 有点忘了 C 行星绕太阳做椭圆轨道运动 D 开普勒第3定律 某行星和地球绕太阳公转的轨道均可视为圆,每过N年,该行星会运动到日地连为什么地球比行星多转一圈,两圈或三圈不行吗,整数圈行不行 手被太阳晒红是怎么会事 牛顿为什么最后信了上帝 有人说是上帝创造了人类,那上帝又是谁创造的 关于行星绕太阳运转 离太阳越近的行星受到的太阳引力越大?这话哪里错了 提出行星绕太阳运行的轨道为椭圆的学者是()A 哥白尼 B 开普勒C 哈雷 D 牛顿 试根据开普勒第三定律和牛顿运动定律证明太阳与行星间的引力大小与太阳的质量和行星的质量 在太阳系中的所有行星中,距太阳最远的类地行星是