在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:EG=CG且EG⊥CG. 请问第二幅图这种情况怎么证垂直?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:49:13
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:EG=CG且EG⊥CG.      请问第二幅图这种情况怎么证垂直?
xTmOP+ \v/Y%˗"aL(A|QN00tliӎnXFcu=s<ޓ_to޴jcukcS]rܕ5:מ9ͥ2o5ݩaa,9x* >wn-wm,;wZO3T̜*aHt>tnm;OZwS!b]AW>3 Tnz*.ԑܕ%GBu$;; Sl.)DtκL 9+=#ʞ8B$ $rSX)W @6?rl?Fv2+ve': MBU<`Uý:w UUSXW * hG|U'4vÐYv:ExBy~МH$2LVwaۘ/!\n4L˿%pSu3@j@b@i#D>," , }TT5b^)+o%3DA:wb˜v\?1|Ts4TC7߄8V5P=LCR*?"7&|?5T86Z丞@ 8ʋ$30(PQ\\^y\?yP=UFN%:PɠU zD9g[0`_=u

在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:EG=CG且EG⊥CG. 请问第二幅图这种情况怎么证垂直?
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:
EG=CG且EG⊥CG. 请问第二幅图这种情况怎么证垂直?

在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:EG=CG且EG⊥CG. 请问第二幅图这种情况怎么证垂直?
图?

证明:图2中,作GH⊥BC,
则EF∥GH∥CD,
又∵G是DF的中点,
∴EH=CH,
则GH是BC的中垂线,
∴GE=CG,
∵EF=EB,BC=CD
∴EF+CD=EC,
∵G是DF的中点,EH=CH,
则GH=1/2(EF+CD),
∴GH=1/2EC,
∴△EGC是等腰直角三角形,
∴EG=C...

全部展开

证明:图2中,作GH⊥BC,
则EF∥GH∥CD,
又∵G是DF的中点,
∴EH=CH,
则GH是BC的中垂线,
∴GE=CG,
∵EF=EB,BC=CD
∴EF+CD=EC,
∵G是DF的中点,EH=CH,
则GH=1/2(EF+CD),
∴GH=1/2EC,
∴△EGC是等腰直角三角形,
∴EG=CG,且EG⊥CG;

收起

证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,
∴EF=CM.

全部展开

证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
由图(3)可知,
∵BD平分∠ABC,∠ABC=90°,
∴∠EBF=45°,
又∵EF⊥AB,
∴△BEF为等腰直角三角形
∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又∵FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)

收起

在正方形abcd的边AB上任取一点E,作EF⊥AB交BD于点F在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接E 在正方形ABCD的边AB上任取一点E,作EF垂直AB交BD于点F,取FEGD中点G,连接EG,CG 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,在正方形ABCD的边AB上任取在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD中点G,连接EG、CG.(1)证明EG⊥CG且EG⊥CG 一道九年级上几何数学证明题在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连结EG,CG.(1)证明EG⊥CG 在正方形ABCD的边AB上任取一点E,作EF垂直AB交BD于F,取FD的中点G,连接EG,CG,如图1 求证:EG=CG,且EG垂直CG 在正方形ABCD的边AB上任取一点E,作EF垂直于AB,取DF的中点G,如图,证明EG=CG,且EG垂直于CG 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG,CG,如图(1)易证EG=CG且EG⊥CG 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.(1)将△B 在四边形ABCD的对角线AC上任取一点E,作EF//AB交BC于点F,作EG//AD于点G.求证:FG//BD 点O是正方形ABCD的重心,在正方形ABCD的边BC上任取一点M,过点C作CN垂直DM,交AB于点N,连接OM,ON.求证OM=ON 如图,e是正方形abcd的边ab上任一点,以be为边作正方形befg,连接ag,ec求ag=ec 在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由. 如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O求om⊥on? 如图,在正方形ABCD的边BC上任取一点M,过点C作CQ垂直DM于Q,并延长交AB于N,若正方形如图,在正方形ABCD的边BC上任取一点M,过点C作CQ⊥DM于Q,并延长交AB于N,若正方形的对角线交点为O,连接OM,ON.求证:O 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证 EG=CG且EG⊥CG.易证证不出来,想不到,一定要写出易证的方法 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),证明:EG=CG且EG⊥CG. 请问第二幅图这种情况怎么证垂直? 在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD中点G,连接EG、CG.(1)如图1,证明EG=CG且EG⊥CG只做出辅助线也可以! 矩形,菱形,正方形 1 如图1,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.2 如图2,操作:把正方形CGEF的对角线CE放在正方形ABCD