微积分是牛顿发明的吗?现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:43:01
微积分是牛顿发明的吗?现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并
x}n#Yޫʐ;k ߒ(nLjH(j")q'ЏWAeVW{o'/߿̻~g2;QVg S)_[NÄW*L߽cF>,tw&Fc9 ˵ ή>]ozM|xOJ)]L㱎bcBotf wV/m/o>xg^=YǘZWIHw z=l..x9*z%o۹ׯLDJ^6AttQfj)w%䰫4w7rR&S5[-vy_Br9Z݃ n?jl+Zo'yzS9lrk8Wl!p[i OhJ4u]wѥMA 9д~f_6陷:mS >Kɵ}m )=W#foWYlU)[ֆfz-v~aMԇCJ 37ZHბL%ɳgO?Aq%v]W''i^ZxA>~W>#ӯ{r?^sN?OkA ۏW÷4U&ayd>/NlMu=$;ZRQVPP&yL58w_[HSz^@-`"q$֪w A L^zCAּ<@ ?vIwW+K 3|V5[JBRzox4X '7\n9UQv6SOdPhJJ/da4~Sa7q[{n+NvNm7Eޜ7/`qD׹E*oA 5I2\?Pr|CJ<|m17.ՙStSm$ 2&E舚4T6Yyl?CoRߙ@@z7mGm.P@'_2d[w0IwUbӪBHioyL*eGkUA{w1x 4+:8ib᧜́ Ad>4vi9ʪm9ƾwz)pA1:[l;9k+\Pl;Dl6#G6-^\HO(3S iS[#Ma7YѪqbg:aaj;l@ X4f"c)r?D:62[hE= u0B^.B2Xω  }PQ3i@TZ1|*LD5 rV|-2'szր|a5ct1*\coOĩB!  ՝8%P8Pp vk4D%bBŭ;=JmXR(d)h'In|?Zס$jd-|Ag8-]_CJ8³l|r*rc]3^PV!Ne0\tjّͭylㅝǖn Tû_h`9Oe%S? 9{kic3f0 qKEHJBkGsˊ~%A <${vL磓GF3EC#z_^N&@jg#~pn=~FB\?|e5kj#Cf8B7"̜y K2sHLkS;ƍٛEJ|uw njonQHƚ8s\1Ѵzu_Ů^ezĹu.b'S2><=~w6;KeR#c- a~yv#`%:F🧻֌n 7!it`_GI:أB GƕkM0;Jl~#qCԡaeCQ|mD`h,޾_\>OɇؖG.&sGXσ1|Q'(cn<ƖAs+X"֞RXY5:XF+1GW85߬m ҫ2 i~%,(bb/zqb_y!(MWv`qiA~{b hp}nx#fNw@`<%މ:@o6<>Rc)V@z +6s{c bQډص91NY!(Lv:@Dߡ=~ҪJ%3!0qySĉ@"z ^7R +"jI HQ$'nj@cI|?WgKJ?萑Pz<@CQ€}_gs&$;zERĂRKˤ^8(0/mPU?9=a.Mn0 )~qJɭs#撈bkFT >]xcP8KUE9bDvh][3kI>DK<$ti&-Бn,^Y8to슓u Pt§3xȀiu|L$̯py$U0O+q¸$˜{oWpOkxɬM!ZeۉN-e3f1Lz@uIA-rAV}5zZ4CS'v6mӥ`0R4 Ժ̠`Le{YK*<j?UAS&UW-rHltX1-JUz/(aHiЂ0;8+kyc,("61=#_Ƀ>}4E!Ή=)q Я=<]-\x bb:XQPkBaCJLd;H3K'$%|R!&6lr1 |HU Ԉ]M 98Čy3|[DSmci[f+AO(i о%wɄ2ͅ>MmTj 6y+;!gtI P-OhшzV&UlhS و9ao "؆ATOqf9߲e.VPa2׌(UU*D*~kaPH aVaоdkUO8hZuۅwEPz4x)S|%;yh0@S),rjwyk > U`a%&am V%YY`6{ x$&(=JR7cb/*})sZX1mGvF0oJ/6T;5)aۦTN^kM.ZBzԘ0_lbN3C>260A+f=֝Ħ>-0B9KZ nRW=%Vd_*pYSD {RG HB&`Jg$H|jFja!pQU\$/dJ./r(Bj3 ջZKE'etx^ޗ7釗h] ?ƽ~~XxPeY a!ٟc$ KbM1Y8t+R.21*7 ,or Zw+U+~),V hWK?UEtO<-\M~ڤz|[3鼓'ӑ.FA0veJs[$뾆E)~C ILzڠ cX\T `Ӓ # D8Z TOdFKca7 i F'-9', Cx9ָۨ6N"j2]>l-ɇj(61?$خe:zh+F2.q8Ǻr+!xrT4G F?{J^(Ov-nk Rm< k" 2V 5@&U0kگ; oiӭj7iӡ> =`YXvqܑ[zh*Ifɏ @-~&i)"6 bNY֑ݵq3>hë;SUa ˭rGHM]Wݺ4{&b癶tda7Gj5@'L†~®0hNJMXGЇfS |ǟ6gp5H Z$ttoB0ހ>ƭuc+%;"?K$$s0 E Ay7?Vt]تgQ/D~MsH0K1Fr%ǫ0$EǦZScNUi;J ɘ /ڬFrٍ^jjKD$;$a+\Jrpnc-<+޽8m2P5R,'+v-EѐtU؋KMBAV,Vxe%8Ie}ITqB). D \.RsfUķhn hnSVqj˫VS>(_h}LѢ3fjѧ||eT`LsV:u`N5򖛅2ix-!]\{): e'V@mjVLrՖqjo8;}rP<^/7傹.ZoO;r;\ygTo"eqNVK+|x SR;M;Bj +-߆zRC}#L7Yxhjc]`|{:sȵ|U0M^+pyT၆H ȷfvdŸI&>ŝzVF\+{5mk$Ԅ~:;ٶN#Ȅ5J#¨ZUCL跓. Iɭ^<~gbb(\ =nLA"eWͭQ .)DϠuHva._Z5$jϡG{kPDZ4䰭|RcugʉKJYUSz|UOoZCUY`s^=֗b"Ʌe@_.;<<I']ckz6P ԿeTV Bp1]?dwTqa-xN%,0c6>c[N̼u>ɑB&9HHh8Y=ƀX|0MKS-brbO 2=3R lMEwSGrxīqI#nUJ,:0d5rIrmˮ N.F]"$ a]k`1!͗ FԴwoq# 7}(oE[—Uqszild&!hojt6LmNj蠒[-WbV D,x[\7JB`DJѲfPH=BKAgۂȸa]4& 9c If u( W Hz;P* ap7|I՞)~ZCѭSw)aHyCX^1?Khbt$l!Nu8C#kbV y# W1o,ObIFG%U+o"duxAwpb9Vt _h"^kmO6qg𪢨q#ݣٹMutYj=ʃͭɃr^SAF8&m&#^ڵhCD)[wt"3Rkƚ8?qMWL#efsUӱ@fֿx_PV9&,9>UK%튣FX{8ӶD1ַCM[wٔ\H_hИoJF7g?x[=/!Uڷ5߼:o].^i/.u?+~iR֫ZjSqb1?bָW6BR26-#~b,(>Z#"WËmo׀֑nhs9z,YH$!f#/vRzi o&- 磥W;57D}q *, jDkZ*TGn^mɧwOݽPplj.>r!)a-<2m^>寯$˭D'%\|ԐVwkb:lJt뺂'eDt8S$CI4M*ob, ѳ{Dl:9% fjq2H3|:*f;j)CGVKGK1"Bծ]Q)nK~!κ7%y͊.\OBZ!PW_#| 1$ !΅%M-cD)BHԅ-_=4 촰u|~ (:tYuquNK_rVXŬ;gl@_(CL77ǏOU7h;9Xz{d0\d}*i`ou2qA&9Lw/ jK;) TZ_0՚-G)kB͘)rǗP9X!)):EPϮBKQZޯ)%?]~1AEYƼP*C~y%fKޣ)'N3U]Ջ#FחZ%x鶴EW!IU~ZM/;_Нk^ɟ4Am\t SH"/H?BPAz@Cod~ ]VCEF˱BV wL/am\ɍHroZ3Ynwzw8፲fi0:KK%t)k:c?,ӟZ4N5p-i ?KɹvBrMk96;1/! A9_kbϟ8\]joCyI̔a6IM^&o~<ͼ鷿>9ǷoSLCƟ$]VY '^=#/0iCZ{o4p/*hFL*{.hYg(,T8;dL޼j3 ii7ZJaT1̄ *B]4~c ;ARvWxygZbMP7q .e!!W,kŘ+4MDTP.Xu?n)?OL^܃s\ p"oo!ukG.%ǭ{iGЛxm? f%\2r?mE= .bЮU~l_ih[4E&5)Ls0#iƧ~7/lg KrjtiɪrBuľV9e.SYzY0-v 70߁7GM.w45΂vV=&^ lؽ"PH%EcxL93MW5{B Ļԫ<EzbfN2I Kli>43lhAmzPᵏ_yz5Zz|

微积分是牛顿发明的吗?现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并
微积分是牛顿发明的吗?
现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?
剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并没有发表 为的是要经过再次验证以求严谨
可是出乎意料的是牛顿在他发表前就将微积分发表出来了.
所以严谨的说微积分并不是牛顿创造的!

微积分是牛顿发明的吗?现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并
微积分学的建立
从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了.
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想.作为微分学基础的极限理论来说,早在古代以有比较清楚的论述.比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”.三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣.”这些都是朴素的、也是很典型的极限概念.
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素.归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题.第二类问题是求曲线的切线的问题.第三类问题是求函数的最大值和最小值问题.第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力.
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论.为微积分的创立做出了贡献.
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作.他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题).
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源.牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的.
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合.他把连续变量叫做流动量,把这些流动量的导数叫做流数.牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法).
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》.就是这样一片说理也颇含糊的文章,却有划时代的意义.他以含有现代的微分符号和基本微分法则.1686年,莱布尼茨发表了第一篇积分学的文献.他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响.现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的.
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力.
前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的.微积分也是这样.
不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立.英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年.
其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的.比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年.他们的研究各有长处,也都各有短处.那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年.
应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的.他们在无穷和无穷小量这个问题上,其说不一,十分含糊.牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说.这些基础方面的缺陷,最终导致了第二次数学危机的产生.
直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础.才使微积分进一步的发展开来.
任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者.在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……
欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命.微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩.

牛顿和莱布尼兹分别发明的.
莱布尼兹于1673~1676年间发明了微积分,1684年公布了论文;牛顿于1665~1666年间发明了微积分,1687年公布在巨著《自然哲学的数学原理》中。微积分到底是谁发明的,这在世界科学史上曾是一桩公案。

是牛顿发明的!!!

我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。
——牛顿
艾萨克·牛顿(Isaac Newton,1643年1月4日—1727年3月31日),英国数学家、物理学家和哲学家。牛顿在《自然哲学的数学原理》里提出的万有引力定...

全部展开

我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。
——牛顿
艾萨克·牛顿(Isaac Newton,1643年1月4日—1727年3月31日),英国数学家、物理学家和哲学家。牛顿在《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石,他还和莱布尼茨各自独立地发明了微积分,被誉为人类历史上最伟大的科学家之一。因为牛顿,经典力学又名为“牛顿力学”,而力的单位也叫做“牛顿”,另外,以牛顿命名的数学和科学术语还有“牛顿方程”、“牛顿-莱布尼茨公式”、“牛顿法”、“高斯-牛顿最小二乘法”、“牛顿环”、“非牛顿流体”等。
少年牛顿
1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。
牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。
大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。
传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。
牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。
牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。
当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。
后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取着书本上的营养。
求学岁月
1661年,19岁的牛顿以减费生的身份进入剑桥大学三一学院,靠为学院做杂务的收入支付学费,1664年成为奖学金获得者,1665年获学士学位。
17世纪中叶,剑桥大学的教育制度还渗透着浓厚的中世纪经院哲学的气味,当牛顿进入剑桥时,那里还在传授一些经院式课程,如逻辑、古文、语法、古代史、神学等等。两年后三一学院出现了新气象,卢卡斯创设了一个独辟蹊径的讲座,规定讲授自然科学知识,如地理、物理、天文和数学课程。
讲座的第一任教授伊萨克·巴罗是个博学的科学家。这位学者独具慧眼,看出了牛顿具有深邃的观察力、敏锐的理解力。于是将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,并把牛顿引向了近代自然科学的研究领域。
在这段学习过程中,牛顿掌握了算术、三角,读了开普勒的《光学》,笛卡尔的《几何学》和《哲学原理》,伽利略的《两大世界体系的对话》,胡克的《显微图集》,还有皇家学会的历史和早期的哲学学报等。
牛顿在巴罗门下的这段时间,是他学习的关键时期。巴罗比牛顿大12岁,精于数学和光学,他对牛顿的才华极为赞赏,认为牛顿的数学才超过自己。后来,牛顿在回忆时说道:“巴罗博士当时讲授关于运动学的课程,也许正是这些课程促使我去研究这方面的问题。”
当时,牛顿在数学上很大程度是依靠自学。他学习了欧几里得的《几何原本》、笛卡儿的《几何学》、沃利斯的《无穷算术》、巴罗的《数学讲义》及韦达等许多数学家的著作。其中,对牛顿具有决定性影响的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,它们将牛顿迅速引导到当时数学最前沿——解析几何与微积分。1664年,牛顿被选为巴罗的助手,第二年,剑桥大学评议会通过了授予牛顿大学学士学位的决定。
1665~1666年严重的鼠疫席卷了伦敦,剑桥离伦敦不远,为恐波及,学校因此而停课,牛顿于1665年6月离校返乡。
由于牛顿在剑桥受到数学和自然科学的熏陶和培养,对探索自然现象产生浓厚的兴趣,家乡安静的环境又使得他的思想展翅飞翔。1665~1666年这段短暂的时光成为牛顿科学生涯中的黄金岁月,他在自然科学领域内思潮奔腾,才华迸发,思考前人从未思考过的问题,踏进了前人没有涉及的领域,创建了前所未有的惊人业绩。
1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。
总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。
1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。
伟大的成就~建立微积分
在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。
笛卡尔的解析几何把描述运动的函数关系和几何曲线相对应。牛顿在老师巴罗的指导下,在钻研笛卡尔的解析几何的基础上,找到了新的出路。可以把任意时刻的速度看是在微小的时间范围里的速度的平均值,这就是一个微小的路程和时间间隔的比值,当这个微小的时间间隔缩小到无穷小的时候,就是这一点的准确值。这就是微分的概念。
求微分相当于求时间和路程关系得在某点的切线斜率。一个变速的运动物体在一定时间范围里走过的路程,可以看作是在微小时间间隔里所走路程的和,这就是积分的概念。求积分相当于求时间和速度关系的曲线下面的面积。牛顿从这些基本概念出发,建立了微积分。
微积分的创立是牛顿最卓越的数学成就。牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术"。它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了。但牛顿超越了前人,他站在了更高的角度,对以往分散的努力加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元。
牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。
在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。
应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。
1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。
牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。
伟大的成就~对光学的三大贡献
在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……
牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。
牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。
许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。
牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。
同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。
牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。
伟大的成就~构筑力学大厦
牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。
在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。
1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。
牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……
一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。
牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。
当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。
在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。
牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
站在巨人的肩上
牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢?
其中一个原因就是各个学科处在不同的发展阶段。在力学和天文学方面,有伽利略、开普勒、胡克、惠更斯等人的努力,牛顿有可能用已经准备好的材料,建立起一座宏伟壮丽的力学大厦。正象他自己所说的那样“如果说我看得远,那是因为我站在巨人的肩上”。而在化学方面,因为正确的道路还没有开辟出来,牛顿没法走到可以砍伐材料的地方。
牛顿在临终前对自己的生活道路是这样总结的:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就象是一个在海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现。”
这当然是牛顿的谦逊。
怪异的牛顿
牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。
开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。
作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海里只剩下了无穷量的二项式定理。他抓住姑娘的手指,错误的把它当成通烟斗的通条,硬往烟斗里塞,痛得姑娘大叫,离他而去。牛顿也因此终生未娶。
牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。他马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。
牛顿晚年
但是由于受时代的限制,牛顿基本上是一个形而上学的机械唯物主义者。他认为运动只是机械力学的运动,是空间位置的变化;宇宙和太阳一样是没有发展变化的;靠了万有引力的作用,恒星永远在一个固定不变的位置上……
随着科学声誉的提高,牛顿的政治地位也得到了提升。1689年,他被当选为国会中的大学代表。作为国会议员,牛顿逐渐开始疏远给他带来巨大成就的科学。他不时表示出对以他为代表的领域的厌恶。同时,他的大量的时间花费在了和同时代的著名科学家如胡克、莱布尼兹等进行科学优先权的争论上。
晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。
晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运动时,竟提出了“神的第一推动力”的谬论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。
1727年3月20日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:
让人们欢呼这样一位多么伟大的
人类荣耀曾经在世界上存在。
参见
艾萨克
lsaac newton
艾萨克·牛顿
==
作为物理学单位
1牛顿=1kg*1m/s^2
===========================================================================================================
牛顿
美国马萨诸塞州东部的城市。在波士顿以西11公里处。全市几被查尔斯河所环绕,风景秀丽,好像是一座大花园。人口8.3万(1980)。公路、铁路交通枢纽。 工业以造纸、针织品、棉纱,电子管、塑料制品为主。有波士顿大学和市民大厅。
关于炼金术
他在炼金术史上也是一位非常重要的人物 有人称他为“第一位科学家 最后一位魔法师”
1727年当他去世后 他的朋友们发现他留下了关于炼金术研究的百万字手稿 当时的英国皇家学会认为这些手稿不适宜公开 他们认为这会损害其作为一名伟大科学家的名誉 1936年当牛顿的大批手稿在索斯比拍卖的时候 人们才重新发现了这些炼金术手稿
在研究这些手稿后 学者们指出 显然牛顿的光学原理和重力原理的灵感都来自于炼金术 而1687年出版的《原理》更是直接得益于他的炼金术研究 学者们还发现牛顿把他一生中大多数时间都用于炼金术实验 他认为炼金术著作中藏着从远古时代就保存下来的智慧是更高的超自然力量赐给人类的智慧
他的仆人描述的牛顿 “几乎凌晨2、3点钟才会去睡觉有时是5、6点 每天只睡4、5个小时 尤其是春、秋两季”
春天是开始炼金术的最佳季节 而秋天是收获的季节 这一点在传说中的炼金术士尼古拉·勒梅的自传里已经很明白的描述过

收起

的实验过程

微积分是牛顿发明的吗?现在我们一提到微积分就想到牛顿,但是微积分到底是不是牛顿发明的呢?剧我的了解,在牛顿发表微积分前几个月 微积分就已经被另外一个人发明出来了 但是那个人并 微积分是牛顿发明的吗? 微积分是什么?是牛顿发明的吗? 微积分起源问题微积分是牛顿发明的吗? 微积分是莱布尼茨发明的还是牛顿发明的 微积分究竟是牛顿发明的还是莱布尼茨? 微积分是由牛顿和谁发明的? 牛顿是在什么时候发明微积分kkkk 牛顿莱布尼茨什么时候发明的微积分 微积分真正算起来是牛顿发明的还是莱布尼茨发明的如题 微积分到底是不是牛顿发明的啊?到底是牛顿呢?还是阿基米发明的啊?我很疑惑,一个朋友和我说的是阿基米的一本书上已经有有关微积分的知识了,到底怎么回事? 重力是牛顿发明的吗 如何理解恩格斯说:微积分是由牛顿,莱布尼茨大体完成的,而不是他们发明的 牛顿是为了解决什么问题才发明出微积分的? 微积分是谁发明的?微积分不是牛顿发明的么,为什么还有一个莱布尼茨? 简述牛顿和莱布尼兹发明微积分的历史背景、发明方法、应用价值的异同 开普勒第二定律的面积他是怎么计算出来的?那时候微积分还没有出来,实际上牛顿发明微积分就是为了解决这个问题的,开普勒的面积是他猜的吗? 是谁最先发明微积分?牛顿?莱布尼茨?