已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一.(1)求证:PB等于PE(2),在点P的运动过程中,PF的长度是否

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 02:20:24
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一.(1)求证:PB等于PE(2),在点P的运动过程中,PF的长度是否
xT]OV+RYb'ne;mzgm-Y4iW($DBGI DOrl!Y.wvay~rw?efl3ʭpYQfBV[j~WЛo]]58xW.RH%yoo!BZ^Ri` 0XV)8g')hq_HjERTޡ-6Rp9!FdRux/L0<1~/r ?ۺ/p&4Km3Z!^PR!Q~nyE:2h%;d!P]43h %a|]߫_$m_j@,­3\s+5<57v8W|[8s %mȇyUN?tH*]+O!v=꼻!/2 ~~?xMe>0yi27p?6Lhԉdt>bYۈ90}&k2@ӷX5N|#ɱy;8&c3czDQiK猨 3Y"m:a,kaCӆ30#_=>FXhc:͉\ܲlơyV 0qL,@W4ww@P9N{ $R58P|p UËOܵ}hwD HcSUSnHvu$][$P!HHS!>!/2Q[# Bo(wDI#QJ pt6|Cm G+i(i (z϶;.FI_ -@4J:H ! r ӛEP'H Z<mjo|0*5 ,de4fӚtX}jJP>2I "Ƀ„Ά$Y!SS([ߌK53T3H N 93&:f"o&54]X/ǀ'$lޣf2fNHu6nPTMVD7-%7 Q|NVף

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一.(1)求证:PB等于PE(2),在点P的运动过程中,PF的长度是否
已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC
于点E,过点E作EF垂直于AC,垂足为点F
一.(1)求证:PB等于PE
(2),在点P的运动过程中,PF的长度是否发生改变?若不变,试求出这个不变的值,若变化,试说明理由.
二.当点E落在线段DC的延长线上时,请在备用图上画出符合要求的大致图形,并判断上述 一 中的结论是否仍然成立
三.在点P的运动过程中,△PEC能否为等腰三角形?如果能试求出AP
TU

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一.(1)求证:PB等于PE(2),在点P的运动过程中,PF的长度是否
一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,
∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;
连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB=Rt∠,∴∠OBP=∠FPE,
在Rt△BOP和Rt△PFE中,∵∠BOP=∠PFE、∠OBP=∠FPE、PB=EP,
∴Rt△BOP≌Rt△PFE中,∴BO=PF,即在P的运动过程中,PF恒等于BO;
二、当E在DC延长线上时,一、中结论仍成立;
三、设△PEC中,CP=CE,∴∠CPE=∠CEP,
∵已证∠CPE=∠OBP,∠OBP+45°=∠ABP,
∵已证四边形BECP内接于圆,∠CEP+45°=∠CEB=∠APB,∴∠ABP=∠APB,AB=AP,
即当AP=AB时,△PEC中为等腰三角形,解毕.

COME ON已知正方形ABCD边长为1CM,点E在对角线上,BE=BC.P是EC上一点,PF垂直于BD,PG垂直于BC,PF+PG的值是多少? 如图,正方形ABCD被两条平行于边的线段EF,GH分割成4个小矩形,p是EF,GH的交点.(1)若点P恰在正方形ABCD的对角线上,且正方形的边长为2,试求此时图形中所有正方形周长之和(2)若矩形PFCH的面积 正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少 如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且 已知:正方形abcd的边长是1,e是cd边上的中点,p为正方形abcd边上的一个动点,动点p从a出发,沿a.b.c.e.运动到已知:正方形abcd的边长是1,e是cd边上的中点,p为正方形abcd边上的一个动点,动点p从a出发, 如图已知正方形ABCD的边长是1,E是CD的中点,P为正方形边上的一个动点已知正方形ABCD的边长为1,E为CD边的中点,P为ABCD边上的一动点.动点P从A点出发,沿A---B---C----E运动到达点E,若设点P经过的路程 四棱锥P--ABCD中,底面ABCD是正方形,边长为1,PD=1,PD垂直平面ABCD,求二面角A_PB_D的大小 已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于P 已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE⊥P已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合), 过点p作PE⊥PB,PE交射线DC于E,过点E 如图,已知正方形ABCD的边长为2,E是CD的中点,P为正方形ABCD边上的一个动点 四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=PC=(2^1/2)a.在其中放一球,求球的最大半径. 已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,F分别为棱BC,AD的中点,已知二面角P-BF-C的余弦值为√6/6求四 正方形ABCD中,P是对角线上AC的一点,连BP,过P做PQ⊥BP,PQ交CD于Q 若AP=CQ=2,则正方形ABCD面积为 边长为1的正方形ABCD中,P是边AB上一点,QP垂直与PD交BC于Q已知AP为X,BQ为Y,则Y,X的函数关系 如图,四棱锥P-ABCD中底面ABCD是边长为1的正方形,PA⊥CD,PA=1,PD=根号2,1.求证PA⊥平面ABCD 2.求P-ABCD的体积 已知P是中心为O的正方形ABCD内一点,AP垂直BP,OP=根号2,PA=6,则正方形ABCD的边长是多少 已知,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=2分之根2AD,E,F为中点求证面PDC⊥面PAB 已知点P是边长为4的正方形ABCD边上的一点,AP=1,且BE⊥PC于点E,且BE为多少