能否用理论证明平行四边形定则
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:03:31
能否用理论证明平行四边形定则
能否用理论证明平行四边形定则
能否用理论证明平行四边形定则
(2)用两只测力计沿不同方向拉细绳套,记下橡皮筋伸长到的位置O,两只测力计的方向及读数F1、F2,做出两个力的图示,以两个力为临边做平行四边形,对角线即为理论上的合力Fˊ,量出它的大小.\x0d(3)只用一只测力计钩住细绳套,将橡皮筋拉到O,记下测力计方向及读数F,做出它的图示.\x0d(3)比较Fˊ与F的大小与方向.\x0d(4)改变两个力F1、F2的大小和夹角,重复实验两次.\x0d实验结论:在误差允许范围内,证明了平行四边形定则成立.\x0d注意事项:(1)同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计钩好后对拉,若两只弹簧测力计在拉的过程中读数相同,则可选,若不同,应另换,直到相同为止;使用时弹簧测力计与板面平行.\x0d(2)在满足合力不超过弹簧测力计量程及橡皮筋形变不超过弹性限度的条件下,应使拉力尽量大一些,以减小误差.\x0d(3)画力的图示时,应选定恰当的标度,尽量使图画得大一些,但也不要太大而画出纸外;要严格按力的图示要求和几何作图法作图.\x0d(4)在同一次实验中,橡皮筋拉长后的节点O位置一定要相同.\x0d(5)由作图法得到的F和实验测量得到的Fˊ不可能完全符合,但在误差允许范围内可认为是F和Fˊ符合即可\x0d矢量的物理学解释:\x0d(1)定义或解释:有些物理量,既要由数值大小(包括有关的单位),又要由方向才能完全确定.这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则.这样的量叫做物理矢量.有些物理量,只具有数值大小(包括有关的单位),而不具有方向性.这些量之间的运算遵循一般的代数法则.这样的量叫做物理标量.\x0d(2)说明:①矢量之间的运算要遵循特殊的法则.矢量加法一般可用平行四边形法则.由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等.矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量.A-B=A+(-B).矢量的乘法.矢量和标量的乘积仍为矢量.矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积.例如,物理学中,功、功率等的计算是采用两个矢量的标积.W=F·S,P=F·v,物理学中,力矩、洛仑兹力等的计算是采用两个矢量的矢积.M=r×F,F=qv×B.②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是学习物理学的有用工具.”\x0d个人的理矢量规律的总结,基于人们对空间广义的对称性的理解.矢量所根据的对平移与转动的对称性(不变性).对迄今发现的所有规律均有效.使用矢量分析方法,较数学分析,相当于知道结论推过程,十分方便.这种方法具有极大的创造性,对物理研究或许有所启发.