一道关于三角函数和向量的问题化简cos5°+cos77°+cos149°+cos221°+cos293°.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:22:08
一道关于三角函数和向量的问题化简cos5°+cos77°+cos149°+cos221°+cos293°.
xSN"A~>3C &@"& e]w]=xA ˂&< ;0}{p\<쥻WAmn3|m`/q':GaYˎ$\( ƨ2o׶OO0aLn_-jo\R taZmT;]}"ib W؊θyA29(z$U8M(P2)9} ^;iKuZfa)ZjfF0<.`Ao9#O}{ `û&؇WKT o<~ % _]} /Iy * $eRe(ƕO ó^0L㿃6BjcDaAiuM6Wk!BZT᝕oO)S&b n# >V곌tLOάA‰)Ih<-G73а|H>H4s\L(7kJ7DK

一道关于三角函数和向量的问题化简cos5°+cos77°+cos149°+cos221°+cos293°.
一道关于三角函数和向量的问题
化简cos5°+cos77°+cos149°+cos221°+cos293°.

一道关于三角函数和向量的问题化简cos5°+cos77°+cos149°+cos221°+cos293°.
.解法1.令x = 18°
∴cos3x = sin2x
∴4(cosx)^3 - 3cosx = 2sinxcosx
∵cosx≠ 0
∴4(cosx)^2 - 3 = 2sinx
∴4sinx2 + 2sinx - 1 = 0,
又0 < sinx < 1
∴sinx = (√5 - 1)/4
即sin18° = (√5 - 1)/4.
解法2.作顶角为36°、腰长为1 的等腰三角形ABC,BD为其底角B的平分线,设AD = x
则AD = BD = BC = x,DC = 1 - x.
由相似三角形得:x2 = 1 - x
∴x = (√ 5 - 1)/2
∴sin18° = x/2 = (√5 - 1)/4.
.cos5+cos77+cos149+cos221+cos293
=cos5+cos77-cos31-cos41 +cos67
=2cos41*cos36 - 2cos36*cos5 +cos67
=2cos36* (cos41-cos5) +cos67
=-2cos36* 2sin23*sin18 +sin23
=-sin23 *(4sin18*cos18*cos36)/cos18 +sin23
=-sin23*(2sin36*cos36/cos18) +sin23
=-sin23* (sin72/sin72) +sin23
=-sin23+sin23
=0