F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:18:32
F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(
xRJ@~Oҟ n*H@ջP!-Uc *"hMXG I6 &>/7|Z%˾~t'5EUMVysKՄ^t̶c>bF ;f1Yz[u`7* |K B)|5hX={-

F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(
F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)
F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析,

F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(
设:F1,F2为左右焦点,作PM⊥F1F2于M,F1(-1,0),c=1,|F1F2|=2
直线PF1斜率为-√3,∴PF1方程为:y=-√3(x+1)代入椭圆方程得:
x²/4+(x+1)²=1,解得:x=-8/5
∴MF1=|-8/5-(-1)|=3/5
∴PM=√3*MF1=3√3/5
∴S△PF1F2=F1F2*PM/2=3√3/5

F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积( F1,F2是椭圆x^2/100+y^2/64=1两个焦点,求F1*F2最大值 F1,F2为椭圆X^2/9+y^2/4=1的两焦点,p,F1,F2是一个直角三角形的三个顶点,且PF1>PF2...F1,F2为椭圆X^2/9+y^2/4=1的两焦点,p,F1,F2是一个直角三角形的三个顶点,且PF1>PF2,求PF1/p 一道关于椭圆的题已知F1,F2是椭圆X^2/25+Y^2/b^2=1(0 P是椭圆x^2/4+y^2/3=1上的点,F1,F2是焦点,若三角形PF1F2内切圆半径为1/2,求tanF1PF2 已知F1 F2是椭圆x^2/4+y^2/3=1的两个焦点 过点F1的直线交椭圆于点A,B 若AB的绝对值=24/7 则直线AB的斜率 已知P是椭圆x^2/4+y^2/3=1上的点,F1,F2是两个焦点,求|PF1|*|PF2|的最大值和最小值 P是椭圆x^2/4+y^2/3=1上的点,F1,F2是两个焦点求|PF1|×|PF2|的最大值与最小值之差 设F1、F2是椭圆x^2/9+y^2/4=1的两个焦点,P为椭圆上的一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.求|PF1|/|PF2|的值. 设M是椭圆x^2/25+y^2/9=1上的一点,F1,F2是椭圆的焦点,如果点M到点F1的距离为4则点M到点F2的距离为多少? 设P是椭圆X^2/9+Y^2/4上一动点,F1.F2是椭圆的两个焦点,则COS角f1pf2的最小值是 M是椭圆x^2/9+y^2/4=1上任意一点,F1,F2是椭圆的左、右焦点,则|MF1| *|MF2|的最大值是? 椭圆的数学题设F1,F2是椭圆x^2/4+y^2/3=1的两焦点 M是椭圆上与F1,F2不共线的任意一点 F2MF1的内心为点P,动点P的轨迹方程是我算的是X^2+3Y^2=1 F1,F2,是椭圆x^/2+y^=1的两个焦点,过F1作倾斜角为π/4的玄AB,则三角形F1AB的面积? 设P是椭圆C:x^2/9+y^2/4=1上的点,F1,F2是椭圆的两个焦点,求角F1PF2的最大值 设P是椭圆x^2/9+y^2/4=1上一 点,F1,F2是椭圆的两焦点,则cos∠F1PF2的最小值 设P是椭圆X^2/4+Y^2=1上一点,F1,F2是椭圆的两个焦点,则|PF1||PF2|的最大值为?最小值为? p是椭圆x^2/100+y^2/64上的一点.f1~f2是焦点,若角f1 p f2=60度,则三角形p f1 f2的面积是,x^2/100+y^2/64=1