已知向量a=(1,2),b=(cosθ,sinθ-coaθ),且a垂直b,求tan(2θ+π/4)的值,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:10:05
已知向量a=(1,2),b=(cosθ,sinθ-coaθ),且a垂直b,求tan(2θ+π/4)的值,
xPAJ@L2a2cM&G&]I( EnzEp%2 ] N&4J7޼$Z/۫I$xqD JH8WoټLexppcG\=W:^:1vy&|uv01ʍl-A)b '``I1GwDV2leFl!&2ɻMqML,>̱՜{ ^[y~h=Վt0f+@NrՃCdg3^

已知向量a=(1,2),b=(cosθ,sinθ-coaθ),且a垂直b,求tan(2θ+π/4)的值,
已知向量a=(1,2),b=(cosθ,sinθ-coaθ),且a垂直b,求tan(2θ+π/4)的值,

已知向量a=(1,2),b=(cosθ,sinθ-coaθ),且a垂直b,求tan(2θ+π/4)的值,
因为向量a,b垂直则a*b=0,cosθ+2sinθ-2cosθ=0得tanθ=1/2
tan2θ=2tanθ/(1-tan^2θ)=1/(1-1/4)=4/3
tan(2θ+π/4)=(tan2θ+1)/(1-tan2θ)=(4/3+1)/(1-4/3)=-7

因为a垂直b,且a=(1,2),b=(cosθ,sinθ-coaθ),
所以1*cosθ+2*(sinθ-coaθ)=0
故tanθ=1/2
又tan2θ=2tanθ/(1-tanθ*tanθ)
故tan2θ=4/3
tan(2θ+π/4)=(tan2θ+tanπ/4)/(1-tan2θ*tanπ/4)
所以tan(2θ+π/4)=-7