在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:42:47
在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是
x){:gœ/Ozwku3 գYfV@XPSigk5>tCӶV ٌ6IE1XΆn&”g v>]l{=]7gs:Z8Kl^طG !QdLŎIjʆZ7Bөod~O:]Z@ b@ĞΆ',51=,|i`+ g603l|37G5v

在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是
在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是

在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是
sinA:sinB:sinC=2:√6:(√3+1),根据正弦定理有
a:b:c=2:√6:(√3+1),根据大角对大边,则∠A最小
根据余弦定理cosA=(b²+c²-a²)/2ab=(6+4+2√3-4)/2*√6*(√3+1)=√2/2
所以∠A=45°
答:在三角形ABC中,sinA:sinB:sinC=2:√6:(√3+1),则此三角形最小内角是45°

sinA:sinB:sinC=2:√6:(√3+1)
∠A = 45°
∠B = 60°
∠C = 75°