如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:39:04
如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG
xŒ]OPǿlӗmYINO~>hUXe3&^)eQc@ :uďtj_;:y^ϯB>s2x^zD9Zb3F&eooDGt8GKe*ѸaMOt\t6<~2`7//!Y)}6Sj)V yK{~Ujj2}Aڮ,<1+CoNҳωTK+hKeKeSP,%d3Xșre23s eYټ"Zc1$״w@q"gb ؖDIλdL'oKBK5Y.>X(kKܚǽD?AVwD(jjvJH1RRBN?Q>MoB lꟽ~9H#E3(qnF7P7q"YځxO(0&-oׁCI&na:q$4Nĉ Ez*fr@z/ |50W//

如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG
如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG

如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG
证明:
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD
∠BAD= ∠AGF (全等三角形的性质 )
又∵∠AGF+∠GAF=∠AFC=90°(三角形的外角性质)
∴ ∠BAD+∠GAF=90°
∴∠GAD=90°
∴ AG ⊥AD

如图 在锐角三角形ABC中,已知BE、CF分别是△ABC的高.说明△AEF∽△ABC 已知,如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG⊥EF 已知:如图,在△ABC中,BE,CF是高,D,G分别是BC,EF的中点.求证:DG⊥EF 如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG 已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB, 已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB...已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证: 已知,如图,在平行四边形ABCD中,BE,CF分别是∠ABC和∠BCD的平分线,BE,CF相交于点O1求 BE⊥CF 2.AB=5,BC=8,求EF 已知:如图,在三角形ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG垂直EF 如图,已知在△ABC中,CF,BE分别是AB,AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC 已知,如图,在平行四边形ABCD中,BE.CF分别是∠ABC和∠BCD的平分线,BE.CF相交于点O,①求证;BE⊥CF②试判断AF与DE有何数量关系?说明理由③当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形有分 在△ABC中,已知AD、BE、CF分别是BC、CA、AB三边上的高,求AD、BE、CF三线共点. 已知,如图,在平行四边形ABCD中,BE,CF分别是∠ABC和∠BCD的平分线,BE,CF相交于点OAB=5,BC=8,求EF 已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,早DE上截取BD=AC,在CF的延长线上截取CG=AB,连接已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,在DE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD 如图,在△ABC中,AD,BE,CF分别是三条中线,它们相交于点O)△AGF的面积和△AGE 如图 在△abc中,BE,CF分别是∠b ,∠c的平分线 求证:∠BPC=90°+½∠A 如图,在△ABC中,MN分别是BC与EF,CF⊥AB,BE⊥AC.试说明MN⊥EF 如图,在△ABC中,BE,CF分别是AC,AB边上的高,D是BC中点,M是EF中点,证明DM⊥EF 如图,在△ABC中,BE、CF分别是AC、AB边上的高,M是BC中点.求证:ME=MF不会做···