如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:52:57
如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC.
xŒjP_E jHUٞG(jX\ ]5nES(J)!ͦSBձ+t$+Ndm3&\H{zMۥ^ 9$ORG:jG7Wsv3.g`L;x4HjoUyjE <AcmGVK d[7ٗڊPFh7(nieG]Q],s=Q(sgmW$GFh)`=DEAp]I,K]zN^D)"_y+[DdEY, "wW/.6\W~8GP>G fbAQX?Aы)ʯ08 RZqc$׍ƃ54NA00t+_Q l)Z\kNz'7ﮗknLN?ڳQhm]}5M`jh :E.n"ۃw Ol&yqrnjqL=[L`6c3fy#y

如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC.
如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC.

如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC.
用两角法
(1)角EBO=角OBC,内心定义即得
(2)证角BOc=角BEO=90度+1/2角BAC
证法:角BOC=180-角OBC-角OCB=90+90--角OBC-角OCB=90度+1/2角BAC
角BEO=180-角AEO=180-(90度-1/2角BAC)=90度+1/2角BAC
注意三角形AEF是等腰三角形

证明:∠EOB = ∠AOB - 90° = 180°-1/2(∠BAC+∠ABC)-90° = 90° + 1/2∠ACB - 90° = ∠OCB
∵ OB平分∠ABC 即:∠EBO = ∠OBC
∴ △BEO ∽ △BOC (AA)

如图,O为三角形ABC内心,EF垂直AO于点O,交AB、AC于点E、F,求证:三角形BEO相似于三角形BOC. 如图,O为三角形ABC内心,EF垂直AO于点O,并交AB、AC于点E、F,求证三角形BEO相似于三角形BOC. 如图,O为三角形ABC的内心,延长AO交外接圆于D,求证:BD=OD=CD 如图,已知AO是等腰三角形AEF的底边EF上的高,有AO=EF,延长AE到B,使BE=AE,过点B作AF的垂线,垂足为G,求证:点O是三角形ABC的内心 如图,O为三角形ABC的内心,延长AO交外接圆于点D.求证,BD=OD=CD 如图,已知o为三角形ABC的内心,延长AO交外接圆于D,求证BD=OD=CD 如图,在三角形ABC中,AB=AC,O为三角形ABC内一点,且OB=OC求证AO垂直BC 如图,在三角形ABC中AB=AC,O为三角形ABC内一点,且OB=OC,求证:AO垂直BC 如图 O为三角形ABC的内心,AO交三角形ABC的外接圆于D形的外接圆于D,连接BD,CD,求证:DB=DO=DC 如图,三角形ABC是锐角三角形,I为圆心,O为外心,若OI垂直AI,AB=4,求BE的长I为内心不是圆心 已知O为三角形ABC的内心,延长AO交外接圆于D,求证BD=OD=CD. 如图,已知在三角形ABC中,AB=AC,O是三角形ABC内一点.且AO垂直BC,求证:OB=OC. 如图,在三角形abc中,ab=ac,o是三角形abc内一点,且ob=oc,求证ao垂直bc. 点O为三角形ABC的内心,连接AO交BC于M,证明AB/BM=AO/OM=AC/CM. 三角形ABC内接于圆O,AD垂直BC于D,AO为半径求证:角BAO=角DAC如题 如图,已知abc为任意三角形,o为其中任意一点,求证:ab+bc+ca>ao+bo+co 在三角形ABC中,AB=4,AC=2,BC=3,O为三角形ABC的内心,用向量AB向量AC表示向量AO 如图,三角形ABC中,BE垂直AC于E,CF垂直AB于F,D为BC的中点,H为EF中点,求证:DH垂直EF