首补尾同的两个两位数的积有什么规律

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:52:19
首补尾同的两个两位数的积有什么规律
xYkRފ_Ii,{F.7*!Y@ʕl@%v _ý`e fz4>==3BpR* =>GG^x(֖G[q/_WczIg!4Vz0+K?w飇?~#c[ʳ-z*,i >%N[8%tS,h /'@] 41ً 5p;V۟5;.XT}Paf~dsp[/L_!h2n(8 a!:iIgyhYwϒߦә|^l._6WFӧ`i4X͝dӤrTZ{V;Ń]'ْ&3I6pd_H7WŗzIX.l1XY0,ZA]jIk4Wd`&Qc;2F?Cǃ}h rIċeȽ#ِ#,_2 1&1,1jc T+|P*[H:g,\U%KR/:}yh Ps4+F:e2cbf7HDx @K7ޅd6$k~pdlKbhؒU2(;Y<"pHBw\*EUqa6Q%?Cdh_bK/%!N51ͳo_;pl`Q_ϖ(󭡜~FD"R@e1]TTf Q WRAc\ȯ/CYie,ǐUecۅ[V~oto/_ M)OA\QJC偢7"x,X|AbX0&,<)T}ʸ~_&p|zd6e9SW8ù6i,<.F~z3on3ށnk['B|!&%h vn{q !ULay¬2:\-_J/MMU␩mI(ho03 XHr1Q.>}*.qx!QD|QJAV5~b`CtgfR  琾Pb5,t!hMF^Uh.\#чIv-$ӓ9įQ{lG,Ӄi{t^,=t_|Rm쫹 ުחQYeZUJ!Tzђ.}4k:&G{*iӃNU>D%?uY=g0'ppX9uՀ1[YUӷip,VEb)͕?PؤpuN 85N̩ 35K`(^ l+,7Pba KIxpXw2'MLKkO'G]»\!- iV hG@fpv\BbevX# fx>GaZ庒*ں^[ĖYѭEVk8?oiK&^>K:x]tq&9扂gfPݚ|tlE]Kr|&|3q+dVpa]~p#䳏m%\AVN\Ώŕjr~K/ :&@(j!T=h+nU)tΡ~Cʅfj[|{gt;ٔ~'!n*h<`ݪNZNʉe=c^?uUک9p }7,Nl [mp}G5wUWHfH4,*,0}9Ζ7{mG5BK +TY%( 1_{ 4z0˙Cp%&M4$khw䢩Ϥq~:,vϷ^4S(]q^J_~ ;idu9iRBۭZ˗]~Ox: tlFG]$A_:a=_ fXx

首补尾同的两个两位数的积有什么规律
首补尾同的两个两位数的积有什么规律

首补尾同的两个两位数的积有什么规律
尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位.
例:76×36=(7×3+6)×100+6×6=2736
仅供参考:
三、两位数乘法口算
一位数乘法口算就是口诀表,在讲清算理的基础上要求背会.这里重点介绍几种两位数乘法的特殊算法.
1、两个相同因数积的口算法;(平方口算法)
(1)、基本数与差数之和口算法:
基本数:这个数各位分别平方后,组成一个新的数称基本数.十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位.
差数:这个数十位和个位的积再乘20称差数.
基本数 + 差数 = 这两个相同因数的积.
例1、13×13
基本数:百位:1×1=1
十位:用0占位
个位:3×3=9
所以基本数就是 109
差数:1×3×20=60
基本数 + 差数 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本数:百位以上数字是 6×6=36
十位和个位数字是7×7=49
所以基本数是 3649
差数:6×7×20=840
基本数+差数=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思维过程:
第一步:把这个数个位平方.得出的数,个位作为积的个位,十位保留.
第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留.
第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数.
例1、24×24
第一步:4×4=16 “1”保留,“6”就是积的个位数.
第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数.
第三步 :2×2+1=5 “ 5”就是积的百位数.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是积的个位数.
第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数.
第三步 :3×3+4=13 "13"就是积的百位和千位数字.
所以:37×37=1369
(3)、接近50两个相同因数积的口算
思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位).
例1、53×53
5×5+3=28 再添上3×3=9 (必须两位09) 等于2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等于3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09)
等于2209
所以:47×47=2209
(4)、末位是5的两个相同因数积的口算
思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
两个相同因数积的口算方法很多,这里就不一一介绍了.我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积.举例如下:
例1、13×14
因为:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因为:14×14=196 再减14 还 得182
例2、35×37
因为:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有规律的数的口算
(1)首同尾合十(首同尾补)
思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位.
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位.
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一个数两位数字相同,一个数两位数字互补)
思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积.如积是一位数,十位用零占位.
例:33×64=(3×6+3)×100+3×4=2112
以上三种方法,可以用一个公式计算即:
(头×头+同)×100 + 尾×尾
3、利用特殊数字相乘口算
有些数字很特殊,它们的积是有规律的.
(1)7乘3的倍数或3乘7的倍数
先看看下面的几个式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126.7×27=189
我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.
因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.
果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍数或3乘17的倍数
17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用)
如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍数或13乘17的倍数
17乘13的倍数等于该倍数加该倍数的20倍,再加200倍.
如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍数或7乘43的倍数
43乘7的倍数等于该倍数加该倍数的300倍.
如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、两个接近100的数相乘的口算
(1)超过100的两个数相乘
思维方法:先把一个因数加上另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积.
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的两个数相乘
思维方法:先从一个因数中减去另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积.
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一个超过100,一个不足100的两个数相乘
思维方法:超过100的数减不足100的差,扩大100倍后,减去两个因数分别与100之差的积.
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了.以上仅介绍了部分特殊口算技巧,还有利用运算定律和运算性质可以口算;利用凑整法可以口算等等.要求我们教师要熟记和掌握这些方法,关键只有一种:最终近快的准确的口算出结果.

首补尾同的两个两位数的积有什么规律 首补尾同的两个两位数的积有什么规律 “首补尾同”的两个两位数的积有什么规律(如42*62,25*85) 十位数相同的两位数相乘,积有什么规律 任意写一个两位数;交换这个两位数的十位数字和个位数字,得到一个新数;求这两个两位数的差这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么? 一个两位数的平方有什么规律?全面一点. (1)任意写一个两位数,(2)交换这两位数的十位数字和个位数字,得到一个新数,(3)求这两个两位数的和.再写几个两位数重复上面的过程,这些和有什么规律?这个规律对任意 一个两位数都 有两个两位数,十位上的数字同为n,个位上的数字分别为a,b,且a,b之和等于10.你发现结果有什么规律?你能用整式的乘法一章所学内容解释这个规律吗?注:七、八年级所学内容. 有两个两位数,十位上的数字同为n,个位上的数字分别为a,b,且a,b之和等于10.你发现结果有什么规律?你能用整式的乘法一章所学内容解释这个规律吗?注: 近似数的题 1.任意写一个两位数 我写的是862.交换这个两位数的十位数字和个位数字,得到一个近似数3.求这两个两位数的和有什么规律 这个规律对任意一个两位数都成立吗? 11乘两位数积的规律 两个相邻自然数相乘的积有什么规律两个相邻的自然数的积有什么规律啊? 元素同周期非金属元素的氢化物酸性有什么规律? 两个有理数相乘,积的符号有什么规律? 个位数字是五的两位数平方后末尾的两个数有什么规律为什么 个位数字是5的两位数平方后,末尾的俩个数有什么规律?为什么? 1.12乘42=21乘24;13乘62=31乘26观察这两个等式有什么规律2.利用你所发现的规律,再写出3个类似的等式(两数皆为两位数)!3.若两数皆为两位数,请说明满足此规律的等式条件,并列出所有满足此规律 两个两位数相加的和还是两位数,这样的两位数的组合有多少个