设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:41:54
xRJ@}NɚIR-@xEiڟDR]vmVEQIw(M&W_*xs139;ߙQs)~? PN/
%^0
Y>}aTԦfSBl dSWzU FvǝKa7M۽`Aw#eh/oTmN{בɋ5x_GwlM'[0 >7ЩTlp>絏<<#T-B7pO~ҿQyg?e,ACGT]]=`W҂?sZR^B&Ǻ&ԖBb-z.3%:;qw
l
设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
首先应该知道二元函数在区域D上的二重积分结果是一个数(而不是函数),因此可设∫∫f(u,v)dudv=A,在等式f(x,y)=(a^2-x^2-y^2)^(1/2)+A两边再对区域D进行二重积分,就有∫∫f(x,y)dxdy=∫∫(a^2-x^2-y^2)^(1/2)dxdy+∫∫Adxdy,即A=∫∫(a^2-x^2-y^2)^(1/2)dxdy+A∫∫dxdy,根据二重积分的几何意义,∫(a^2-x^2-y^2)^(1/2)dxdy表示半球x^2+y^2+z^2=a^2(z>0)的体积,等于2πa^3/3,∫∫dxdy表示圆x^2+y^2=a^2的面积,等于πa^2,代入后解得A=2πa^3/[3(1-πa^2)]
但是我身上
设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y)
设f(x,y)是平面区域D={(x,y)|x^2+y^2A.不存在 Bf(0,0) Cf(1,1) Df(1,0)
设闭区域D:{(x,y)|x^2+y^2=0},f(x,y)为D上连续函数,且f(x,y)=(1-x^2-y^2)^1/2-8/πf(u,v)dudv
设D是矩形闭区域:|x|≤1,|y|≤2,则∫∫dxdy
设随机变量(X,Y)服从区域D={(x,y)|x^2+y^2
设积分区域d为x^2+y^2>=2x,x^2+y^2
多元函数积分学的题设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?A.xy B.2xy C.xy+1/8 D.xy+1
多元函数积分设f(x,y)连续,且f(x,y)=xy+∫∫(D)f(u,v)dudv,其中D是由y=0,y=x^2,x=1围城的区域,则f(x,y)=?A.xy B.2xy C.xy+1/8 D.xy+1
设D是由y=0,y=x^2,x=1 所围的平面区域,且f(x,y)=xy+∫∫(D)f(u,v)dudv,则f(x,y)=?
设L为平面区域D:x^2+y^2+4x-2y
设D是区域{(x,y)|x^2+y^2
设平面区域D={(x,y)| x^2+y^2
二重积分题 ,设f(x,y)在区域D:0
设区域D:|x|+|y|
高数 重积分,设f(x,y)在闭区域D=|(x,y)|x^2+y^2=0|上连续,且f(x,y)=【根号下(1-x^2+y^2)】-π分之8倍∫∫√R^2-x^2-y^2dxdy,求f(x,y)
若区域D:x^2+y^2
区域D是x^2+y^2
设(X,Y)在矩形区域D上服从均匀分布,其中D:x^2>=y,0那A如何求出来呢