设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点写出必要的推导过程,麻烦您了,谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:29:39
xQJ@.gt7$@\~lO(iDL' BܸasϹ3FN4Dg ۏ2X
1
0ud0m:um~] 'UqU}`;2<M>+7zE=U|P #Q;u]\k~kM#%"*[Ù9n$h
m17
0gy@S9~2MY8yi/Lc0a^RxB2B
僡'kRqQ/.L
%fD{?
VBQڱ_七G
设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点写出必要的推导过程,麻烦您了,谢谢
设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点
写出必要的推导过程,麻烦您了,谢谢
设A,B为抛物线y^2=2px(p>0)上的两点,满足OA垂直OB(O为原点),证明直线AB经过定点写出必要的推导过程,麻烦您了,谢谢
设A(X1,Y1),B(X2,Y2)则 y1^2=2px1,y2^2=2px2
∠AOB=90
(y1*y2)/(x1*x2)=-1 即y1*y2=-4P^2
由直线AB得:y-y1=(y2-y1)/(x2-x1)*(x-x1)
即y-y1=2p/(y2+y1)*(x-x1)因为 y1^2=2px1,y2^2=2px2和y1*y2=-4P^2
故:(y2+y1)*y=2p*(x-2p)
所以直线AB过定点(2p,0)
已知抛物线y^2=2px(px>0).(1)若p=1,设A点坐标为(2/3,0),求抛物线上距点A最近的点B的坐标及AB的距离
设抛物线y²=2px(p>0)的焦点为F点A(0,2)若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为
设抛物线y^2=2px(p>0)的焦点为F,A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离是?
已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点距离为5 设直线y=kx+b与抛物线C交于A(X1,Y1),B (X2,Y2)两
设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点的坐标分别为(x1,y1)、(x2,y2),y1>0,y2
设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点的坐标分别为(x1,y1)、(x2,y2),y1>0,y2
过点P(0,4)作直线x^2+y^2=4的切线L,若L与抛物线(p>0)交于两点A、B,且OA垂直OB,求抛物线的方程直线x^2+y^2=4改为圆x^2+y^2=4 1L 为什么只能设抛物线为y²=2px?为什么只能设抛物线为y²=2px?
设抛物线y2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点设抛物线y^2 =2px (p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC‖x轴.求证直线AC经过原点O.
过抛物线y^2=2px(p>0)焦点的一条直线和抛物线交于两点,两个交点的纵坐标分别为y1,y2;求证:y1.y2= -p^2设直线AB的方程为:y=k(x-p/2),将其代入y^2=2px中,得:k^2*x^2-(2p+k^2*p)x+(p^2*k^2)/4=0设A(x1,y1),B(x2,y2)
设F为抛物线y²=2px(p>0)的焦点,ABC为该抛物线上三点,当向量FA+FB+FC=0且|FA|+|FB|+|Fc|=3时,求设F为抛物线y²=2px(p>0) 的焦点,A、B、C为该抛物线上三点,当向量FA+FB+FC=0且 |FA|+|FB|+|Fc|=3时,此
如图,设抛物线的标准方程为y的平方=2px(p>0),焦点为F,过点F的任意一条直线l,与抛物线交如图,设抛物线的标准方程为y的平方=2px(p>0),焦点为F,过点F的任意一条直线l,与抛物线交A、B两点,求AB的
已知抛物线Y平方=2px,(p>0),过抛物线的焦点作倾斜角为45度的直线L交抛物线与A、B两点,且|AB|=6,...已知抛物线Y平方=2px,(p>0),过抛物线的焦点作倾斜角为45度的直线L交抛物线与A、B两点,且
设p>0是一常数,过点Q(2P,0)的直线与抛物线y²=2px交于相异两点A、B.求证:以线段AB为直径的圆过原点.
设抛物线y^2=2px焦点为F,直线l过点F交抛物线于A,B两点,A,B纵坐标分别为y1,y2,证y1y2=-p^2
已知抛物线y^2=2px(p>0)的焦点,斜率为2√2的直线交抛物线于A(x1,y1),B(x2,y2)(x1
过抛物线y^2=2px(p大于0)的焦点作一条直线交抛物线于A(x1,y1)B(x2,y2)则y1y2/x1x2 为( )
设抛物线y^2=2px(p>0)的焦点弦交抛物线于A、B两点,若A(x1,y1)B(x2,y2),证明|AB|=x1+x2+p
已知抛物线…已知抛物线y方=2px(p>0)和点A(5,0),A点到抛物线上的点最短距离为4(1)求此抛物线的方程(2)设A、B是抛物线上的两点,当OA垂直OB时,求证:直线AB恒过定点Q,并求q点坐标